bzoj3894 文理分科

题目描述:

bz

题解:

最小割。

对于不考虑组合的情况,可以:

  • $S->x$,边权为$art_x$;
  • $x->T$,边权为$science_x$;

这样跑出来的总权值-最小割等于正解贪心

考虑加上组合,那么可以:

  • 新建点$y$代表文科组合,$z$代表理科组合;
  • $S->y$,边权$sameart_x$;
  • $y->x$,$y->xx$($xx$为$x$相邻点),边权$inf$;
  • $z$同理。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 30050;
const int inf = 0x3f3f3f3f;
const ll  Inf = 0x3f3f3f3f3f3f3f3fll;
template<typename T>
inline void read(T&x)
{
    T f = 1,c = 0;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
    x = f*c;
}
int n,m,tot,S,T,hed[N],cnt=1,nm[105][105];
int dx[5]={-1,1,0,0};
int dy[5]={0,0,-1,1};
bool check(int x,int y){return x>=1&&y>=1&&x<=n&&y<=m;}
struct EG
{
    int to,nxt;
    ll fl;
}e[24*N];
void ae(int f,int t,ll fl)
{
    e[++cnt].to = t;
    e[cnt].nxt = hed[f];
    e[cnt].fl = fl;
    hed[f] = cnt;
}
void AE(int f,int t,ll fl)
{
    ae(f,t,fl);
    ae(t,f,0);
}
int cur[N],dep[N];
bool vis[N];
bool bfs()
{
    queue<int>q;
    memcpy(cur,hed,sizeof(cur));
    memset(dep,0x3f,sizeof(dep));
    dep[S] = 0,vis[S] = 1;q.push(S);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        for(int j=hed[u];j;j=e[j].nxt)
        {
            int to = e[j].to;
            if(e[j].fl&&dep[to]>dep[u]+1)
            {
                dep[to] = dep[u]+1;
                if(!vis[to])vis[to]=1,q.push(to);
            }
        }
        vis[u] = 0;
    }
    return dep[T]!=inf;
}
ll dfs(int u,ll lim)
{
    if(u==T||!lim)return lim;
    ll fl = 0,f;
    for(int j=hed[u];j;j=e[j].nxt)
    {
        int to = e[j].to;
        if(dep[to]==dep[u]+1&&(f=dfs(to,min(lim,e[j].fl))))
        {
            fl += f,lim -= f;
            e[j].fl -= f,e[j^1].fl += f;
            if(!lim)break;
        }
    }
    return fl;
}
ll dinic()
{
    ll ret = 0;
    while(bfs())ret+=dfs(S,Inf);
    return ret;
}
int main()
{
    read(n),read(m);
    ll ans = 0;
    S = ++tot,T = ++tot;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            nm[i][j] = ++tot;
    ll w;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            read(w);ans+=w;
            AE(S,nm[i][j],w);
        }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            read(w);ans+=w;
            AE(nm[i][j],T,w);
        }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            read(w);ans+=w;
            int u = nm[i][j] + n*m;
            AE(S,u,w);
            for(int k=0;k<=4;k++)
            {
                int x = i+dx[k],y = j+dy[k];
                if(check(x,y))AE(u,nm[x][y],Inf);
            }
        }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            read(w);ans+=w;
            int u = nm[i][j] + 2*n*m;
            AE(u,T,w);
            for(int k=0;k<=4;k++)
            {
                int x = i+dx[k],y = j+dy[k];
                if(check(x,y))AE(nm[x][y],u,Inf);
            }
        }
    printf("%lld\n",ans-dinic());
    return 0;
}
View Code

 

posted @ 2019-04-23 19:15  LiGuanlin  阅读(127)  评论(0编辑  收藏  举报