Happy Equation

Source: The 10th Shandong Provincial Collegiate Programming Contest

题解:

因为2^p为偶数,所以a,x的奇偶性相同

1.当a为奇数时,答案始终为1

2.下面讨论a为偶数的情况

因为a为偶数,所以a=2*other,a^x=2^x*other^x;

当x>=p时,a^x%2^p==0,此时只需要关心x^a%2^p==0,即x^a是2^p的倍数;

因为x为偶数,所以x=2^q*tmp,x^a=(2^q)^a*tmp^a=2^qa*tmp^a;

另tmp==1,并让2^qa>=2^p,即qa>=p,解得q>=p/a向上取整,满足x^a是2^p的倍数的q的最小值(也就是说x中必须要包含一个2^q才能是2^p的倍数

由于1<=x<=2^p,故ans+=(2^p)/(2^q)-(p-1)/(2^q);

当x<p时,可以直接暴力

AC代码:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const int maxn=1e5+50;
 5 ll a,p,mod,ans;
 6 ll qpow(ll x,ll y)
 7 {
 8     ll res=1;
 9     while(y){
10         if(y%2==1) res=res*x%mod;
11         x=x*x%mod;
12         y>>=1;
13     }
14     return res;
15 }
16 int main()
17 {
18     int t;
19     for(scanf("%d",&t);t;t--)
20     {
21         mod=1;ans=0;
22         scanf("%lld %lld",&a,&p);
23         if(a%2==1)
24         {
25             printf("1\n");
26             continue;
27         }
28         mod<<=p;
29         for(ll i=2;i<p;i+=2)
30         {
31             if(qpow(i,a)==qpow(a,i)) ans++;
32         }
33         ll q=(p-1)/a+1;
34         ll cnt=1;cnt<<=q;
35         ans+=mod/cnt-(p-1)/cnt;
36         printf("%lld\n",ans);
37     }
38     return 0;
39 }
View Code

 

posted @ 2019-06-16 16:01  Gang_Li  阅读(143)  评论(0编辑  收藏  举报