make_classification函数

 

sklearn.datasets.make_classification

1
sklearn.datasets.make_classification(n_samples=100, n_features=20, *, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None)

  

生成一个随机的 n nn 类分类问题。

在不打乱的情况下,X按以下顺序水平堆叠特征:主要n_informative特征,然后n_redundant 是信息特征的线性组合,然后是n_repeated 重复,随机抽取信息和冗余特征的替换。其余特征充满随机噪声。因此,无需改组,所有有用的特征都包含在列中 。X[:, :n_informative + n_redundant + n_repeated]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from sklearn.datasets import make_classification
 
X, y = make_classification(n_samples=6, n_classes=2, n_features=5, n_informative=5,n_redundant=0,n_clusters_per_class=1)
display(X,y)
 
"""
n_samples=6 - 6行6个数据
n_classes=2 - 结果分为2类即二分类
n_features=5 - 5个特征
n_informative=5 - 5个全部有效的特征
n_redundant=0 - 冗余特征为0
n_clusters_per_class=1 - 每一个类别聚为一个簇
 
array([[ 1.10885456, -1.97464085,  2.14372944, -0.08241471, -2.60173628],
       [ 0.98456921, -4.67257395, -0.10161149,  0.52329866,  2.0178222 ],
       [-2.92441307, -2.20249011,  0.12827954,  1.90711152,  0.24340137],
       [ 0.14524134, -1.42685331,  1.92731161, -0.72915701,  1.3529692 ],
       [-0.09694719, -0.28604481, -2.62609999, -0.46131174,  0.72515074],
       [ 0.25540393, -2.64589841, -2.05721611,  0.53203936,  0.34273113]])
        
array([0, 1, 1, 0, 1, 0])
"""

  

同时参考这链接中的不平衡数据部分,以及代码部分的crossvalidate()

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate
 
classifier = RandomForestClassifier()
 
scores = cross_validate(
    classifier, X, y, cv=10,
    scoring=['accuracy', 'precision', 'recall', 'f1','r2', 'neg_mean_squared_error']
)
 
scores = pd.DataFrame(scores)
scores.mean()
 
#output
fit_time                       0.296672
score_time                     0.011580
test_accuracy                  0.911000
test_precision                 0.920261
test_recall                    0.904000
test_f1                        0.910236
test_r2                        0.644000
test_neg_mean_squared_error   -0.089000
dtype: float64

  

posted on   lmqljt  阅读(96)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示