Tensorboard SummaryWriter()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
 
from torch.utils.tensorboard import SummaryWriter
 
batch_size_list = [100, 1000, 10000]
lr_list = [.01, .001, .0001, .00001]
shuffle = [True,False]
def get_num_correct(preds, labels):
    return preds.argmax(dim=1).eq(labels).sum().item()
 
train_set = torchvision.datasets.FashionMNIST(
    root='./data/FashionMNIST',
    train=True,
    download=True,
    transform=transforms.Compose([transforms.ToTensor()])
)
 
# data_loader = torch.utils.data.DataLoader(train_set,batch_size=batch_size,shuffle=True)  # shuffle=True
 
 
 
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
 
        self.fc1 = nn.Linear(in_features=12 * 4 * 4, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=60)
        self.out = nn.Linear(in_features=60, out_features=10)
 
    def forward(self, t):
        # (1) input layer
        t = t
 
        # (2) hidden conv layer
        t = self.conv1(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
 
        # (3) hidden conv layer
        t = self.conv2(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
 
        # (4) hidden Linear layer
        t = t.reshape(-1, 12 * 4 * 4# -1表示对行没约束,反正是12*4*4列
        t = self.fc1(t)
        t = F.relu(t)
        # (5) hidden Linear layer
        t = self.fc2(t)
        t = F.relu(t)
        # (6) output layer
        t = self.out(t)
        # t=F.softmax(t,dim=1) #此处不使用softmax函数,因为在训练中我们使用了交叉熵损失函数,而在torch.nn函数类中,已经在其输入中隐式的
        # 执行了一个softmax操作,这里我们只返回最后一个线性变换的结果,也即是 return t,也即意味着我们的网络将使用softmax操作进行训练,但在
        # 训练完成后,将不需要额外的计算操纵。
 
        return t
 
network = Network()
 
for batch_size in batch_size_list:
    for lr in lr_list:
        network = Network()
 
        data_loader = torch.utils.data.DataLoader(
            train_set, batch_size=batch_size
        )
        optimizer = optim.Adam(
            network.parameters(), lr=lr
        )
 
        images, labels = next(iter(data_loader))
        grid = torchvision.utils.make_grid(images)
 
        comment=f' batch_size={batch_size} lr={lr}'
        tb = SummaryWriter(comment=comment)
        tb.add_image('images', grid)
        tb.add_graph(network, images)
 
        for epoch in range(5):
            total_loss = 0
            total_correct = 0
            for batch in data_loader:
                images, labels = batch # Get Batch
                preds = network(images) # Pass Batch
                loss = F.cross_entropy(preds, labels) # Calculate Loss
                optimizer.zero_grad() # Zero Gradients
                loss.backward() # Calculate Gradients
                optimizer.step() # Update Weights
 
                total_loss += loss.item() * batch_size#这里上述用的是mini-batch训练方法,一个batch得loss会被平均,所以乘以size得到总和
                total_correct += get_num_correct(preds, labels)
 
            tb.add_scalar(
                'Loss', total_loss, epoch
            )
            tb.add_scalar(
                'Number Correct', total_correct, epoch
            )
            tb.add_scalar(
                'Accuracy', total_correct / len(train_set), epoch
            )
 
            for name, param in network.named_parameters():
                tb.add_histogram(name, param, epoch)
                tb.add_histogram(f'{name}.grad', param.grad, epoch)
 
            print(
                "epoch", epoch
                ,"total_correct:", total_correct
                ,"loss:", total_loss
            )
        tb.close()
 
f'''
from itertools import product
 
parameters=dict(lr=[.01,.001],batch_size=[10,100,1000],shuffle=[True,False])
# for i,j in parameters.items():
#     print(i,j,sep='\t')
para_values=[value for value in parameters.values()]
for lr,batch_size,shuffle in product(*para_values):#这里的星号告诉乘积函数把列表中的每个值作为参数,而不是把列表本身作为参数来对待
    comment=f' batch_size={batch_size} lr={lr} shuffle={shuffle}'
    print(lr,batch_size,shuffle)
'''

  

posted on   lmqljt  阅读(702)  评论(0编辑  收藏  举报

编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示