Tensorboard SummaryWriter()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import torch.optim as optim from torch.utils.tensorboard import SummaryWriter batch_size_list = [ 100 , 1000 , 10000 ] lr_list = [. 01 , . 001 , . 0001 , . 00001 ] shuffle = [ True , False ] def get_num_correct(preds, labels): return preds.argmax(dim = 1 ).eq(labels). sum ().item() train_set = torchvision.datasets.FashionMNIST( root = './data/FashionMNIST' , train = True , download = True , transform = transforms.Compose([transforms.ToTensor()]) ) # data_loader = torch.utils.data.DataLoader(train_set,batch_size=batch_size,shuffle=True) # shuffle=True class Network(nn.Module): def __init__( self ): super ().__init__() self .conv1 = nn.Conv2d(in_channels = 1 , out_channels = 6 , kernel_size = 5 ) self .conv2 = nn.Conv2d(in_channels = 6 , out_channels = 12 , kernel_size = 5 ) self .fc1 = nn.Linear(in_features = 12 * 4 * 4 , out_features = 120 ) self .fc2 = nn.Linear(in_features = 120 , out_features = 60 ) self .out = nn.Linear(in_features = 60 , out_features = 10 ) def forward( self , t): # (1) input layer t = t # (2) hidden conv layer t = self .conv1(t) t = F.relu(t) t = F.max_pool2d(t, kernel_size = 2 , stride = 2 ) # (3) hidden conv layer t = self .conv2(t) t = F.relu(t) t = F.max_pool2d(t, kernel_size = 2 , stride = 2 ) # (4) hidden Linear layer t = t.reshape( - 1 , 12 * 4 * 4 ) # -1表示对行没约束,反正是12*4*4列 t = self .fc1(t) t = F.relu(t) # (5) hidden Linear layer t = self .fc2(t) t = F.relu(t) # (6) output layer t = self .out(t) # t=F.softmax(t,dim=1) #此处不使用softmax函数,因为在训练中我们使用了交叉熵损失函数,而在torch.nn函数类中,已经在其输入中隐式的 # 执行了一个softmax操作,这里我们只返回最后一个线性变换的结果,也即是 return t,也即意味着我们的网络将使用softmax操作进行训练,但在 # 训练完成后,将不需要额外的计算操纵。 return t network = Network() for batch_size in batch_size_list: for lr in lr_list: network = Network() data_loader = torch.utils.data.DataLoader( train_set, batch_size = batch_size ) optimizer = optim.Adam( network.parameters(), lr = lr ) images, labels = next ( iter (data_loader)) grid = torchvision.utils.make_grid(images) comment = f ' batch_size={batch_size} lr={lr}' tb = SummaryWriter(comment = comment) tb.add_image( 'images' , grid) tb.add_graph(network, images) for epoch in range ( 5 ): total_loss = 0 total_correct = 0 for batch in data_loader: images, labels = batch # Get Batch preds = network(images) # Pass Batch loss = F.cross_entropy(preds, labels) # Calculate Loss optimizer.zero_grad() # Zero Gradients loss.backward() # Calculate Gradients optimizer.step() # Update Weights total_loss + = loss.item() * batch_size #这里上述用的是mini-batch训练方法,一个batch得loss会被平均,所以乘以size得到总和 total_correct + = get_num_correct(preds, labels) tb.add_scalar( 'Loss' , total_loss, epoch ) tb.add_scalar( 'Number Correct' , total_correct, epoch ) tb.add_scalar( 'Accuracy' , total_correct / len (train_set), epoch ) for name, param in network.named_parameters(): tb.add_histogram(name, param, epoch) tb.add_histogram(f '{name}.grad' , param.grad, epoch) print ( "epoch" , epoch , "total_correct:" , total_correct , "loss:" , total_loss ) tb.close() f ''' from itertools import product parameters=dict(lr=[.01,.001],batch_size=[10,100,1000],shuffle=[True,False]) # for i,j in parameters.items(): # print(i,j,sep='\t') para_values=[value for value in parameters.values()] for lr,batch_size,shuffle in product(*para_values):#这里的星号告诉乘积函数把列表中的每个值作为参数,而不是把列表本身作为参数来对待 comment=f' batch_size={batch_size} lr={lr} shuffle={shuffle}' print(lr,batch_size,shuffle) ''' |
标签:
SummaryWriter()
, tensorboard
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix