Wordcount -- MapReduce example -- Mapper
Mapper maps input key/value pairs into intermediate key/value pairs.
E.g.
Input: (docID, doc)
Output: (term, 1)
Mapper Class Prototype:
Mapper<Object, Text, Text, IntWritable>
// Object:: INPUT_KEY
// Text:: INPUT_VALUE
// Text:: OUTPUT_KEY
// IntWritable:: OUTPUT_VALUE
Special Data Type for Mapper
IntWritable
A serializable and comparable object for integer.
Example:
private final static IntWritable one = new IntWritable(1);
Text
A serializable, deserializable and comparable object for string at byte level. It stores text in UTF-8 encoding.
Example:
private Text word = new Text();
Hadoop defines its own classes for general data types.
-- All "values" must have Writable interface;
-- All "keys" must have WritableComparable interface;
Map Method for Mapper
Method header
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException
// Object key:: Declare data type of input key;
// Text value:: Declare data type of input value;
// Context context:: Declare data type of output. Context is often used for output data collection.
Tokenization
// Use Java built-in StringTokenizer to split input value (document) into words:
StringTokenizer itr = new StringTokenizer(value.toString());
Building (key, value) pairs
// Loop over all words:
while (itr.hasMoreTokens()) {
// convert built-in String back to Text:
word.set(itr.nextToken());
// build (key, value) pairs into Context and emit:
context.write(word, one);
}
Map Method Summary
Mapper class produces Mapper.Context object, which comprise a series of (key, value) pairs
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
Overview of Mapper Class
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
分类:
Big Data
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)