Warming Up
Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which is usually called "Normal Distribution":
X∼N(μ, σ2)=1√2πσe−(x−μ)22σ2
where μ=E(X), σ=var(X).
Now, if we have bivariate form of X=[x1 x2], and also assume x1 and x2 are statistically independent, then we can get the joint distribution:
P(x1,x2)=P(x1)P(x2)=1√2πσe−(x1−μ1)22σ21√2πσe−(x2−μ2)22σ2=1(√2πσ)2exp{−(x1−μ1)22σ2−(x2−μ2)22σ2}=1(√2πσ)2exp{−12[(x1−μ1)σ−2(x1−μ1)+(x2−μ2)σ−2(x2−μ2)]}
Rewrite formula into matrix form:
1(√2πσ)2exp{−12[(x1−μ1)Tσ−2(x2−μ2)Tσ−2][(x1−μ1)(x2−μ2)]}=1(√2πσ)2exp{−12[(x1−μ1)T(x2−μ2)T][σ−200σ−2][(x1−μ1)(x2−μ2)]}
Let [σ−200σ−2]=Σ−1,x=[x1x2],μ=[μ1μ2], then we also get Σ=[σ200σ2] and det(Σ)=σ4. Plug Σ,x,μ in equation above and we obtain:
1(√2π)2det(Σ)1/2exp{−12(x−μ)TΣ−1(x−μ)}
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.
Multivariate Gaussian Distribution
In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
1(√2π)ddet(Σ)1/2exp{12(x−μ)TΣ−1(x−μ)}
Written with StackEdit.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)