Fork me on GitHub
LUCENE.NET使用探秘

对于满足全文检索的需求来说,Lucene.Net无疑是一个很好的选择。它引入了增量索引的策略,解决了在数据频繁改动时重建索引的问题,这对于提高web的性能至关重要(其他相关特性大家可以参看官方文档)。Lucene.Net是基于文档性的全文搜索,所以使用Lucene.Net时要把数据库中的数据先导出来,这也是一个建立索引的过程。代码如下:

复制代码
 1 /// <summary>
 2 /// Add Data into Indexes
 3 /// </summary>
 4 /// <param name="models">Data collection</param>
 5 /// <param name="optimize">Whether to optimize the indexes after adding new indexes</param>
 6 public void AddToSearchIndex(IEnumerable<T> models, bool optimize = false)
 7 {
 8     var analyzer = new StandardAnalyzer(Version.LUCENE_30);
 9     using (var writer = new IndexWriter(_directory,analyzer,IndexWriter.MaxFieldLength.UNLIMITED))
10     {
11         foreach (var model in models)
12         {
13           //remove older index entry
14           var searchQuery = new TermQuery(new Term("Id", (model as dynamic).ID.ToString()));
16           writer.DeleteDocuments(searchQuery);
17 
18           var doc = new Document();
19           foreach (var prop in Props)
20           {
21               var value = prop.GetValue(model);
22               if (value == null)
23               {
24                 continue;
25               }
26          //only store ID,we use it to retrieve model data from DB
27   doc.Add(new Field(prop.Name, value.ToString(), 28   prop.Name == "ID" ? Field.Store.YES : Field.Store.NO, 29 Field.Index.ANALYZED)); 30   } 31   writer.AddDocument(doc); 32   } 33   if (optimize) 34   { 35   writer.Optimize(); 36   } 37 } 38 }
复制代码

  上述函数用于把到处的数据添加到索引文件中,我们可以指定是否在完成插入后优化索引。优化索引可以提高检索速度,但会消耗Cpu资源,不建议经常优化它。另外,我们在插入索引时会先检测时更新还是添加,这用于完成对旧数据的更新。那么,如果当数据库移除了一条记录,对于索引文件我们又该如何做呢?

  和数据库操作类似,当从数据库移除记录时,从所以文件中移除相应记录即可,代码如下:

复制代码
/// <summary>
/// Remove specfied index record 
/// </summary>
/// <param name="record_id">the record's ID</param>
public void ClearSearchIndex(int record_id)
{
    var analyzer = new StandardAnalyzer(Version.LUCENE_30);
    using (var writer = new IndexWriter(_directory, analyzer, IndexWriter.MaxFieldLength.UNLIMITED))
    {
        // remove older index entry
        var searchQuery = new TermQuery(new Term("ID", record_id.ToString()));
        writer.DeleteDocuments(searchQuery);
        writer.Commit();
    }
    analyzer.Dispose();
}
复制代码

  同样,我们可以删除所有的索引记录

复制代码
/// <summary>
/// Remove all index records
/// </summary>
/// <returns>whether operation success or not</returns>
public bool ClearAllSearchIndex()
{
   StandardAnalyzer analyzer = null;
   try
   {
     analyzer = new StandardAnalyzer(Version.LUCENE_30);
     using (var writer = new IndexWriter(_directory, analyzer, true, 
IndexWriter.MaxFieldLength.UNLIMITED)) {
//remove older index entries writer.DeleteAll(); writer.Commit(); } analyzer.Dispose(); } catch (Exception) { analyzer.Dispose(); return false; } return true; }
复制代码

  下面该主角登场了,看看如何检索记录吧:

复制代码
/// <summary>
/// Searching specfied value in all fields,or you can specfied a field to search in.
/// </summary>
/// <param name="querystring">value to search</param>
/// <param name="fieldname">field to search, search all fieds at default</param>
/// <returns>realted records' ID sequence</returns>
public IEnumerable<int> Search(string querystring, string fieldname = "")
{
    IEnumerable<int> result = new List<int>();

    if (string.IsNullOrEmpty(querystring))
    {
        return new List<int>();
    }
        //remove invalid characters
    querystring = ParseSearchString(querystring);

    // validation
    if (string.IsNullOrEmpty(querystring.Replace("*", "").Replace("?", "")))
    {
        return new List<int>();
    }

    using (var searcher = new IndexSearcher(_directory, true))
    {
        ScoreDoc[] hits = null;
        //the max hited racord count
        var hits_limit = 1000;
        var analyzer = new StandardAnalyzer(Version.LUCENE_30);
        //used to separate the querystring to match records in indexes
        QueryParser parser = null;
        Query query = null;

        if (!string.IsNullOrEmpty(fieldname))
        {
           //create a QueryParser instance in the specified field
          parser = new QueryParser(Version.LUCENE_30, fieldname, analyzer);
        }
        else
        {
          string[] fields = Props.Select(p => p.Name).ToArray<string>();
           //create a QueryParser instance in the all fields
          parser = new MultiFieldQueryParser(Version.LUCENE_30, fields, analyzer);
        }

        //create a query instance from QueryParser and querystring
      query = ParseQuery(querystring, parser);
        //get the hited record
      hits = searcher.Search(query, hits_limit).ScoreDocs;
      var resultDocs = hits.Select(hit => searcher.Doc(hit.Doc));
        //transmit the index record's ID to the DB record's ID
      result = resultDocs.
      Select(doc => ((SpecEquipmentID)int.Parse(doc.Get("ID"))).CurrentID).
      ToList();   analyzer.Dispose(); }
return result; }
复制代码

  从上述可以看出,我们可以指定在若干字段间搜索,这些字段间的检索同样可采用模糊检索的模式:

复制代码
public IEnumerable<int> MultiFieldsSearch(Dictionary<string, string> multiFieldsDict)
{
   IEnumerable<int> result = new List<int>();

   if (multiFieldsDict.Count == 0)
   {
       return result;
   }

   using (var searcher = new IndexSearcher(_directory, true))
   {
      ScoreDoc[] hits = null;
      var hits_limit = 1000;
      var analyzer = new StandardAnalyzer(Version.LUCENE_30);
      var occurs = (from field in multiFieldsDict.Keys select Occur.MUST).ToArray();
      var queries = (from key in multiFieldsDict.Keys select multiFieldsDict[key]).ToArray();

      Query query = MultiFieldQueryParser.Parse(Version.LUCENE_30, queries, 
multiFieldsDict.Keys.ToArray(), occurs, analyzer); hits
= searcher.Search(query, hits_limit).ScoreDocs; var resultDocs = hits.Select(hit => searcher.Doc(hit.Doc)); result = resultDocs.
Select(doc => ((SpecEquipmentID)int.Parse(doc.Get("ID"))).CurrentID).
      Distinct().ToList(); analyzer.Dispose(); }
return result; }
复制代码

  在这里解释下:为什么用QueryParser生成Query的实例?
  
  使用QueryParser可以让我们在指定的字段间使用模糊查询,也就是说,只要相应的记录之中包含检索值,都会被命中,这也正是全文搜索所必需的。如果不采用以上方式,可以使用BooleanQuery结合TermQuery在指定字段间搜索,但这样以来,只有同值记录(精确查询)会被命中。这些搜索条件间同样可以像数据库查询那样采用‘与或非’的形式。

  最后说明一下:对于数值类型和日期类型的处理比较特殊,如果采用像字符串那样的处理方式,结果的精确性就会下降,至于如何处理针对数值类型和日期类型的数据检索,大家可以参考Lucene的官方文档。提及一下我的解决方案:我们可以采用常规数据库与Lucene结合的方式,让Lucene处理字符串类型的检索,常规数据库处理日期及数值类型的检索,各抒其长。

 
 
 
标签: Lucene.NetC#
posted on 2013-01-19 23:36  HackerVirus  阅读(168)  评论(0编辑  收藏  举报