统计学(四)——python实现正态分布

正态分布(Normaldistribution)

  也称“常态分布”,又名高斯分布(Gaussiandistribution)

  最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

  正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

  若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。其概率密度函数为:

我们通常所说的标准正态分布是的正态分布:

 

# -*- coding:utf-8 -*-
# Python实现正态分布
# 绘制正态分布概率密度函数
import numpy as np
import matplotlib.pyplot as plt
import math

u = 0  # 均值μ
u01 = -2
sig = math.sqrt(0.2)  # 标准差δ

x = np.linspace(u - 3 * sig, u + 3 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig)
print(x)
print("=" * 20)
print(y_sig)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.grid(True)
plt.show()

 

概率密度函数

 

# Python实现正态分布
# 绘制正态分布概率密度函数
import math
import numpy as np
import matplotlib.pyplot as plt

u = 0 # 均值μ
u01 = -2
sig = math.sqrt(0.2) # 标准差δ
sig01 = math.sqrt(1)
sig02 = math.sqrt(5)
sig_u01 = math.sqrt(0.5)
x = np.linspace(u - 3*sig, u + 3*sig, 50)
x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.plot(x_01, y_sig01, "g-", linewidth=2)
plt.plot(x_02, y_sig02, "b-", linewidth=2)
plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
# plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
plt.grid(True)
plt.show()

 

 

posted @ 2019-01-29 20:54  LeoLRH  阅读(29689)  评论(0编辑  收藏  举报