摘要: 图像配准算法一般可分为: 一、基于图像灰度统计特性配准算法;二、基于图像特征配准算法;三、基于图像理解的配准算法。其中,算法类型二最普遍,基于特征的图像配准算法的核心步骤为:1.特征提取、2.特征匹配、3.模型参数估计、4.图像变换和灰度插值(重采样)。图像配准必须得考虑3个问题: 分别是配准时所用到的空间变换模型、配准的相似性测度准则以及空间变换矩阵的寻优方式。1)空间变换模型,是指的这两幅要配准的图像之间的映射模型,比如只有旋转、平移这些操作,那就是刚体变换模型,又比如有缩放操作,甚至X方向和Y方向缩放的幅度都还不一样,那就是仿射变换或者非线性变换模型。总之你要做配准,先要确定这两幅图像之 阅读全文
posted @ 2014-01-04 12:25 Lemon_Hi 阅读(6288) 评论(0) 推荐(2) 编辑