P2123 皇后游戏 txt推导过程

  没做过 P1080 [NOIP2012 提高组] 国王游戏 的可以去做做()

  这道题的大臣是有全序关系的(就是说可以比较优劣且具有传递性),所以直接定义小于号排序就好了。

  以下是我在新建文本文档推导全序关系的过程(英语能理解就行,也不保证推对了,仅供参考)。

let j = i+1, sum = \sum^{i+1}_k a_k, "i < j" means "i is better then j(otherwise, we should swap i and j)"

c_i      = max(    c_{i-1}            , sum - a_j)    + b_i
c_{i+1}  = max(max(c_{i-1}            , sum - a_j)    + b_i,   sum)+ b_j

c_{i+1}  = max(    c_{i-1} + b_i + b_j, sum - a_j + b_i + b_j, sum + b_j)
c_{i+1}' = max(    c_{i-1} + b_i + b_j, sum - a_i + b_i + b_j, sum + b_i)

i < j ? max(sum - a_j + b_i + b_j, sum + b_j) < max(sum - a_i + b_i + b_j, sum + b_i)
      ? a_j > b_i ? sum + b_j < sum + b_i or sum + b_j < sum - a_i + b_i + b_j     -> a_j > b_i; b_i > min(a_i, b_j)
             : b_i + b_j - a_i < b_i or b_i + b_j - a_i < - a_j + b_i + b_j    -> a_j < b_i; a_j > min(a_i, b_j).
                                                                     -> min(a_i, b_j)  < min(a_j, b_i)
                                                                    if min(a_j, b_k)  < min(a_k, b_j)
                                                                    is min(a_i, b_k)  < min(a_k, b_i) true?

min(a, b) < min(c, d) -> a < c, d or b < c, d
min(c, e) < min(f, b) -> c < b, f or e < b, f
then we want to know is min(a, e) < min(f, d) true?
-> a < d, f or e < d, f -> it's true, let us prove it
if a < d, f or e < d, f is false, 
  let a < c, d. then if c < b, f -> a < c < d, f. wrong
        so e < b, f. then we have f < a < d < e < f -> f < f. wrong

we ignore something important(the quality).
if min(a_i, b_j) = min(a_j, b_i) then i = j? nope.
consider {1, 1} = {2, 7} < {3, 5} but {1, 1} = {3, 5}
let a_i = min(a_i, b_j)
notice that if a_i = a_j. i < j iff b_i > b_j
        otherwise a_i = b_i, i<j or i is j

 这道题 ouuan 讲得非常清楚,推荐。

 

posted @ 2022-08-23 00:36  Lcyanstars  阅读(21)  评论(0编辑  收藏  举报