Halcon学习(车牌识别)

通过学习别人的程序,个人了解到车牌识别分为如下几个步骤:

1.读取一张车牌照片

2.将车牌照片转化成R、G、B、H、S、V分量

3.选取最合适的分量图像进行阈值分割(获取车牌在图像中的区域)

4.打开矩形区域

5.获取矩形区域

6.获取矩形区域的角度

7.获取矩形区域的中心点

8.求射频变换的矩阵(根据极轴方向确定旋转至0度还是180度)

9.旋转图像

10.从原图中抠取当前矩形区域

11.缩小图像区域

12.图像灰度化

13.由于Halcon自带字库为白底黑字,所以将图像灰度值翻转

14.阈值分割出文字区域

15.消除噪点

16.砍成不同区域

17.根据中心点坐标选取区域

18.根据面积选取区域

19.区域排序

20.选取Halcon自带字库

21.识别文字

22.显示原图

23显示字符

 

源码如下:


read_image (Image, 'C:/Users/58937/Desktop/t01099427dc105a338f.jpg')
dev_close_window ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
dev_display (Image)

decompose3 (Image, Red, Green, Blue)
trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')

threshold (Saturation, Regions, 182, 255)

opening_rectangle1 (Regions, RegionOpening, 6,6)
*因为是有角度的矩形所以用rectangle2
shape_trans (RegionOpening, RegionTrans, 'rectangle2')
*区域的角度和中心点
orientation_region (RegionTrans, Phi)
area_center (RegionTrans, Area, Row, Column)
*注意求解角度的极轴方向
vector_angle_to_rigid (Row, Column, Phi, Row, Column, rad(180), HomMat2D)
*旋转,抠图,缩小
affine_trans_image (Image, ImageAffinTrans, HomMat2D, 'constant', 'false')
affine_trans_region (RegionTrans, RegionAffineTrans, HomMat2D, 'nearest_neighbor')
reduce_domain (ImageAffinTrans, RegionAffineTrans, ImageReduced)
*字符分割
rgb1_to_gray (ImageReduced, GrayImage)
*翻转图像灰度值
invert_image (GrayImage, ImageInvert)

 

threshold (GrayImage, Regions1, 62, 255)
 


opening_rectangle1 (Regions1, RegionOpening1, 3,3)
*砍
connection (RegionOpening1, ConnectedRegions)


select_shape (ConnectedRegions, SelectedRegions1, 'row', 'and', 108,119)
select_shape (SelectedRegions1, SelectedRegions, 'area', 'and', 80,99999)

 

*进行字符排序从左到右
sort_region (SelectedRegions, SortedRegions, 'first_point', 'true', 'column')
*halcon自带字库
read_ocr_class_mlp ('Industrial_0-9A-Z_NoRej.omc', OCRHandle)
*识别
do_ocr_multi_class_mlp (SortedRegions, ImageInvert, OCRHandle, Class, Confidence)
dev_display (Image)
disp_message (WindowHandle,Class, 'image', 0, 0, 'red', 'false')

 

posted @ 2020-03-23 16:18  LcVong  Views(204)  Comments(0Edit  收藏  举报