结果可视化

 1 import tensorflow as tf
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 def add_layer(inputs, in_size, out_size,activation_function=None):
 5         Weights = tf.Variable(tf.random_normal([in_size, out_size]))
 6         biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
 7         Wx_plus_b = tf.matmul(inputs, Weights) + biases
 8         if activation_function is None:
 9             outputs = Wx_plus_b
10         else:
11             outputs = activation_function(Wx_plus_b)
12     return outputs
13 
14 x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
15 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
16 y_data=np.square(x_data)-0.5+noise
17 xs=tf.placeholder(tf.float32,[None,1],name='x_input')
18 ys=tf.placeholder(tf.float32,[None,1],name='y_input')
19 
20 l1=add_layer(xs,1,10,activation_function=tf.nn.relu)  #隐藏层
21 prediction=add_layer(l1,10,1,activation_function=None) #输出层
22 loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
23             reduction_indices=[1]))
24 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
25 init = tf.global_variables_initializer()
26 sess = tf.Session()
27 sess.run(init)
28 fig = plt.figure()  #生成图片框架
29 ax=fig.add_subplot(1,1,1)  #连续性的画图
30 ax.scatter(x_data,y_data)  #用点的形式把真实的数据画出来
31 plt.ion()  #用于连续显示,不会show一下就停止显示
32 plt.show()
33 for i in range(1000):
34     sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
35     if i%50==0:
36         print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
37         try:
38             ax.lines.remove(lines[0])  #在图片中去除第一条线
39         except Exception:
40             pass
41         prediction_value = sess.run(prediction,feed_dict={xs:x_data})
42         lines=ax.plot(x_data,prediction_value,'r-',lw=5) #红色,宽度为5的线,x,y轴的数据plot上去
43 plt.pause(0.1) #暂停0.1s

 

    

 

 

 

 

posted @ 2019-11-25 14:57  小雨点1206  Views(162)  Comments(0Edit  收藏  举报