[51nod1659]数方块

题目链接:

51nod1659

简单数学题。

假设\(n\le m\),那么枚举正方形边长\(1\le i\le n\),有:

\(F(n,m)=\sum_{i=1}^n\limits (n-i+1)(m-i+1)\)

\(=\sum_{i=1}^n\limits nm-\sum_{i=1}^n\limits ni+\sum_{i=1}^n\limits n-\sum_{i=1}^n\limits im+\sum_{i=1}^n\limits i^2-\sum_{i=1}^n\limits i+\sum_{i=1}^n\limits m-\sum_{i=1}^n\limits i+\sum_{i=1}^n\limits 1\)

\(=n^2m-n\frac{n(n+1)}{2}+n^2-m\frac{n(n+1)}{2}+\frac{n(n+1)(2n+1)}{6}-\frac{n(n+1)}{2}+nm-\frac{n(n+1)}{2}+n\)

\(=\frac{3n^2m+3nm-n^3+n}{6}\)

那么枚举\(n(F(n,n)\le x)\),求出\(m\)即可。

时间复杂度 \(O(\sqrt[3]{x})\)

代码:

#include <cstdio>
typedef long long ll;
typedef unsigned long long ull;

ull F(const ull n,const ull m)
{return (3*n*n*m+3*n*m-n*n*n+n)/6;}
int s,an;
ull x,a1[1000005],a2[1000005];

int main()
{
	scanf("%llu",&x);
	for(ull n=1;F(n,n)<=x;++n)
	{
		if((6*x+n*n*n-n)%(3*n*n+3*n))continue;
		ull m=(6*x+n*n*n-n)/(3*n*n+3*n);
		a1[++an]=n,a2[an]=m,s+=1+(n!=m);
	}
	printf("%d\n",s);
	for(int i=1;i<=an;++i)printf("%llu %llu\n",a1[i],a2[i]);
	for(int i=an-(s&1);i>=1;--i)printf("%llu %llu\n",a2[i],a1[i]);
	return 0;
}
posted @ 2019-03-23 21:05  LanrTabe  阅读(268)  评论(0编辑  收藏  举报