python之并发基础(IO模块)
IO模型简介
我们这里研究的IO模型都是针对网络IO的:
Stevens在文章中一共比较了五种IO Model:
- blocking IO 阻塞IO
- nonblocking IO 非阻塞IO
- IO multiplexing IO多路复用
- signal driven IO 信号驱动IO
- asynchronous IO 异步IO
由signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。
IO发生时涉及的对象(network IO为例):
调用这个IO的process (or thread);
系统内核(kernel)(通俗理解:操作系统)
当IO操作发生时,经历以下两个阻塞阶段:
1)等待数据准备 (Waiting for the data to be ready)
2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
补充:
1、输入操作:read、readv、recv、recvfrom、recvmsg共5个函数,如果会阻塞状态,则会经理wait data和copy data两个阶段,如果设置为非阻塞则在wait 不到data时抛出异常
2、输出操作:write、writev、send、sendto、sendmsg共5个函数,在发送缓冲区满了会阻塞在原地,如果设置为非阻塞,则会抛出异常
3、接收外来链接:accept,与输入操作类似
4、发起外出链接:connect,与输出操作类似
输入操作一般都是被动接收,而我们重点讨论的网络IO主要表现在readv、recv、recvfrom
被动等待数据的时间一般很长,这就是IO操作遇到阻塞的主要原因。
不论是收数据还是发送数据,都是直接跟自己的操作系统打交道,问自己的OS要数据或将数据交给OS发出去。
因此被动等数据的时间很长,而主动发数据就很容易,因此可以不考虑send这种网络IO(忽略不计)。
阻塞IO模型
"""
我们之前写的都是阻塞IO模型 协程除外
"""
import socket
server = socket.socket()
server.bind(('127.0.0.1',8080))
server.listen(5)
while True:
conn, addr = server.accept()
while True:
try:
data = conn.recv(1024)
if len(data) == 0:break
print(data)
conn.send(data.upper())
except ConnectionResetError as e:
break
conn.close()
# 在服务端开设多进程或者多线程 进程池线程池 其实还是没有解决IO问题
该等的地方还是得等 没有规避
只不过多个人等待的彼此互不干扰
非阻塞IO
Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可以在本次到下次再发起read询问的时间间隔内做其他事情,或者直接再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),然后返回。
也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。
所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。
"""
要自己实现一个非阻塞IO模型
"""
import socket
import time
server = socket.socket()
server.bind(('127.0.0.1', 8081))
server.listen(5)
server.setblocking(False)
# 将所有的网络阻塞变为非阻塞
r_list = []
del_list = []
while True:
try:
conn, addr = server.accept()
r_list.append(conn)
except BlockingIOError:
# time.sleep(0.1)
# print('列表的长度:',len(r_list))
# print('做其他事')
for conn in r_list:
try:
data = conn.recv(1024) # 没有消息 报错
if len(data) == 0: # 客户端断开链接
conn.close() # 关闭conn
# 将无用的conn从r_list删除
del_list.append(conn)
continue
conn.send(data.upper())
except BlockingIOError:
continue
except ConnectionResetError:
conn.close()
del_list.append(conn)
# 挥手无用的链接
for conn in del_list:
r_list.remove(conn)
del_list.clear()
# 客户端
import socket
client = socket.socket()
client.connect(('127.0.0.1',8081))
while True:
client.send(b'hello world')
data = client.recv(1024)
print(data)
总结:
"""
虽然非阻塞IO给你的感觉非常的牛逼
但是该模型会 长时间占用着CPU并且不干活 让CPU不停的空转
我们实际应用中也不会考虑使用非阻塞IO模型
"""
IO多路复用
"""
当监管的对象只有一个的时候 其实IO多路复用连阻塞IO都比不上!!!
但是IO多路复用可以一次性监管很多个对象
server = socket.socket()
conn,addr = server.accept()
监管机制是操作系统本身就有的 如果你想要用该监管机制(select)
需要你导入对应的select模块
"""
import socket
import select
server = socket.socket()
server.bind(('127.0.0.1',8080))
server.listen(5)
server.setblocking(False)
read_list = [server]
while True:
r_list, w_list, x_list = select.select(read_list, [], [])
"""
帮你监管
一旦有人来了 立刻给你返回对应的监管对象
"""
# print(res) # ([<socket.socket fd=3, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8080)>], [], [])
# print(server)
# print(r_list)
for i in r_list: #
"""针对不同的对象做不同的处理"""
if i is server:
conn, addr = i.accept()
# 也应该添加到监管的队列中
read_list.append(conn)
else:
res = i.recv(1024)
if len(res) == 0:
i.close()
# 将无效的监管对象 移除
read_list.remove(i)
continue
print(res)
i.send(b'heiheiheiheihei')
# 客户端
import socket
client = socket.socket()
client.connect(('127.0.0.1',8080))
while True:
client.send(b'hello world')
data = client.recv(1024)
print(data)
总结:
"""
监管机制其实有很多
select机制 windows linux都有
poll机制 只在linux有 poll和select都可以监管多个对象 但是poll监管的数量更多
上述select和poll机制其实都不是很完美 当监管的对象特别多的时候
可能会出现 极其大的延时响应
epoll机制 只在linux有
它给每一个监管对象都绑定一个回调机制
一旦有响应 回调机制立刻发起提醒
针对不同的操作系统还需要考虑不同检测机制 书写代码太多繁琐
有一个人能够根据你跑的平台的不同自动帮你选择对应的监管机制
selectors模块
"""
异步IO
"""
异步IO模型是所有模型中效率最高的 也是使用最广泛的
相关的模块和框架
模块:asyncio模块
异步框架:sanic tronado twisted
速度快!!!
"""
import threading
import asyncio
@asyncio.coroutine
def hello():
print('hello world %s'%threading.current_thread())
yield from asyncio.sleep(1) # 换成真正的IO操作
print('hello world %s' % threading.current_thread())
loop = asyncio.get_event_loop()
tasks = [hello(),hello()]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()