使用KNN算法手写体识别
- #!/usr/bin/python
- #coding:utf-8
- import numpy as np
- import operator
- import matplotlib
- import matplotlib.pyplot as plt
- import os
- '''''
- KNN算法
- 1. 计算已知类别数据集中的每个点依次执行与当前点的距离。
- 2. 按照距离递增排序。
- 3. 选取与当前点距离最小的k个点
- 4. 确定前k个点所在类别的出现频率
- 5. 返回前k个点出现频率最高的类别作为当前点的预测分类
- '''
- '''''
- inX为要分类的向量
- dataSet为训练样本
- labels为标签向量
- k为最近邻的个数
- '''
- def classify0(inX , dataSet , labels , k):
- dataSetSize = dataSet.shape[0]#dataSetSize为训练样本的个数
- diffMat = np.tile(inX , (dataSetSize , 1)) - dataSet#将inX扩展为dataSetSize行,1列
- sqDiffMat = diffMat**2
- sqDistances = sqDiffMat.sum(axis=1)
- distances = sqDistances**0.5
- sortedDistIndicies = distances.argsort()#返回的是元素从小到大排序后,该元素原来的索引值的序列
- classCount = {}
- for i in range(k):
- voteIlabel = labels[sortedDistIndicies[i]]#voteIlabel为类别
- classCount[voteIlabel] = classCount.get(voteIlabel,0)+1#如果之前这个voteIlabel是有的,那么就返回字典里这个voteIlabel里的值,如果没有就返回0
- sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)#key=operator.itemgetter(1)的意思是按照字典里的第一个排序,{A:1,B:2},要按照第1个(AB是第0个),即‘1’‘2’排序。reverse=True是降序排序
- print sortedClassCount
- return sortedClassCount[0][0]
- '''''
- 将图像转换为1*1024的向量
- '''
- def img2vector(filename):
- returnVect = np.zeros((1,1024))
- fr = open(filename)
- for i in range(32):
- line = fr.readline()
- for j in range(32):
- returnVect[0,i*32+j] = int(line[j] )
- return returnVect
- '''''
- 手写体识别系统测试
- '''
- def handwritingClassTest(trainFilePath,testFilePath):
- hwLabels = []
- trainingFileList = os.listdir(trainFilePath)
- m=len(trainingFileList)
- trainSet = np.zeros((m,1024))
- for i in range(m):
- filename = trainingFileList[i]
- classNum = filename.split('.')[0]
- classNum = int(classNum.split('_')[0])
- hwLabels.append(classNum)
- trainSet[i] = img2vector( os.path.join(trainFilePath,filename) )
- testFileList = os.listdir(testFilePath)
- errorCount = 0
- mTest = len(testFileList)
- for i in range(mTest):
- filename = trainingFileList[i]
- classNum = filename.split('.')[0]
- classNum = int(classNum.split('_')[0])
- vectorUnderTest = img2vector(os.path.join(trainFilePath, filename))
- classifyNum = classify0(vectorUnderTest,trainSet,hwLabels,10)
- print "the classifier came back with : %d , the real answer is : %d"% (classifyNum , classNum)
- if(classifyNum != classNum) : errorCount+=1
- print ("\nthe total number of error is : %d"%errorCount)
- print ("\nthe error rate is : %f"%(float(errorCount)/mTest))
- handwritingClassTest()