[BZOJ3675]序列分割

3675: [Apio2014]序列分割

Time Limit: 40 Sec  Memory Limit: 128 MB

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
 

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】 

在样例中,小H可以通过如下3轮操作得到108分: 

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置 

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。 

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数 

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 

3)=36分。 

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个 

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 

20分。 

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。 

【数据规模与评分】 

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

 

题解:

首先通过手推可以发现,得到的价值和切割顺序无关(小栗子:把序列切成3段①②③的话,(①+②)*③+①*②=①*(②+③)+②*③)

这样的话本题就可以从左到右扫了.我们设f[i][j]为在j这个点切i次最大价值,s[i]为前缀和

对于某一个切割点j,考虑上一个切割点k,有f[i][j]=max{f[i-1][k]+s[k]*(s[j]-s[k]),k∈[1,j)}

这个方程又对应着一个简单的O(N2K)暴力

1 for(int i=1;i<=k+1;i++)
2 {
3     for(int j=1;j<=n;j++)
4         for(int u=0;u<j;u++)
5             f[j]=max(f[j],g[u]+(s[j]-s[u])*s[u]);
6     for(int j=0;j<=n;j++)
7         swap(f[j],g[j]);
8 }
9 printf("%lld",f[n]);
一个简单的暴力

但考虑到数据范围,这样的暴力无疑会T,因此考虑优化.

首先,无论哪种打法都要开滚动数组,不然会内存爆炸.设滚动数组为g[i]

对于两个决策点k1<k2,如果k2优于k1

则g[k1]+s[k1]*(s[j]-s[k1])<g[k2]+s[k2]*(s[j]-s[k2])

g[k1]-g[k2]<s[k2]*(s[j]-s[k2])-s[k1]*(s[j]-s[k1])

g[k1]-g[k2]<s[k2]*s[j]-s[k1]*s[j]+s[k1]2-s[k2]2

g[k1]-g[k2]+s[k2]2-s[k1]2<s[j]*(s[k2]-s[k1])

(g[k1]-g[k2]+s[k2]2-s[k1]2)/(s[k2]-s[k1])<s[j]

这样我们又得到了一个可爱的斜率式子

那么我们利用这个式子计算就好了~

代码见下:

 1 #include<cstdio>
 2 #include<cstring>
 3 using namespace std;
 4 typedef long long LL;
 5 const int N=100010;
 6 const int K=210;
 7 int n,k,q[N],a[N],now=1,pre=0;
 8 LL f[2][N],s[N];
 9 inline double l(int k1,int k2){return 1.0*(f[pre][k1]-f[pre][k2]+s[k2]*s[k2]-s[k1]*s[k1])/(s[k2]-s[k1]);}
10 int main()
11 {
12     scanf("%d%d",&n,&k);int tmp=0;
13     for(int i=1;i<=n;i++)
14         scanf("%lld",&a[i]);
15     for(int i=1;i<=n;i++)if(a[i])a[++tmp]=a[i];;
16     n=tmp;
17     for(int i=1;i<=n;i++)s[i]=a[i]+s[i-1];
18     for(int i=1,h=1,t=0;i<=k;i++,h=1,t=0)
19     {
20         memset(q,0,sizeof(q));
21         for(int j=i;j<=n;j++)
22         {
23             while(h<t&&l(q[t-1],q[t])>l(q[t],j-1))t--;
24             q[++t]=j-1;
25             while(h<t&&l(q[h],q[h+1])<s[j])h++;
26             f[now][j]=f[pre][q[h]]+(s[j]-s[q[h]])*s[q[h]];
27         }
28         pre^=1,now^=1;
29     }
30     printf("%lld",f[pre][n]);
31 }
BZOJ3675
posted @ 2017-06-14 20:29  LadyLex  阅读(396)  评论(0编辑  收藏  举报