[BZOJ4008]亚瑟王
Description
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。
他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
1如果这张卡牌在这一局游戏中已经发动过技能,则
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌);
否则(是最后一张),结束这一轮游戏。
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1将其以 pi的概率发动技能。
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。
Input
输入文件的第一行包含一个整数 T,代表测试数据组数。
接下来一共 T 组数据。
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的
伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。
Sample Input
1
3 2
0.5000 2
0.3000 3
0.9000 1
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
3.2660250000
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。
除非备注中有特殊说明,数据中 pi与di均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
题解
先膜一波XYZ大神
这道题首先我们要想好状态数组含义
由于这是个抽卡游戏,每抽到一张卡其他卡的概率都会改变
所以我们要消除这种不方便,故设f[i][j]表示前i张卡在游戏中剩下j轮被选择的概率
对于第i-1张卡,考虑它对前i张的贡献:要么在剩下j轮都没被打出,要么它一定在某一轮中放了技能
所以这张卡对前i张卡的影响是
j轮都没打出:f[i][j]+=f[i-1][j]*pow(1-p[i-1],j)
某一轮打出了:f[i][j-1]+=f[i-1][j]*(1-pow(1-p[i-1],j));
所以f[i][j]的递推公式是:f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));
然后把所有f[i][j]乘上在j轮中某一轮打出的概率(1-pow(1-p[i],j)),再乘伤害d[i]然后累加,得到的就是最后答案
代码见下
#include<cstdio> #include<cstring> #include<cmath> using namespace std; const int N=250; const int R=150; int t,n,r,d[N]; double p[N],k[N],f[N][R]; inline void intn() { for(int i=0;i<N;i++)p[i]=k[i]=0; memset(d,0,sizeof(d)); } int main() { scanf("%d",&t); while(t--) { intn(); scanf("%d%d",&n,&r); for(int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]); for(int i=0;i<N;i++) for(int j=0;j<R;j++) f[i][j]=0; double ans=0; f[0][r]=1; for(int i=1;i<=n;i++) for(int j=1;j<=r;j++) { f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1)); ans+=f[i][j]*(1-pow(1-p[i],j))*d[i]; } printf("%.10lf\n",ans); } }
Progress is not created by contented people.