HD1060Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11011 Accepted Submission(s): 4214
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2 3 4
Sample Output
2 2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
一开始用java做,果断超时,不过用java给我的感觉是,几天没用,就感觉有点陌生了,把这个代码记录下来,还是挺不错的:
import java.math.BigInteger; import java.util.Scanner; public class Main{ public static void main(String[] args) { int i; Scanner cin = new Scanner(System.in); int n = cin.nextInt(); for(i=0;i<n;i++){ BigInteger b =cin.nextBigInteger(); int c = b.intValue(); b = b.pow(c); String e = b.toString(); System.out.println(e.charAt(0)); } } }
题解思路,利用公式n=10^x*m=>lgn=x+lg(m);
具体步骤:
1.对M=N^N两边取对数得log10(M)=N*log10(N),即M=10^(N*log10(N))
2.要求M的最高位,则令N*log10(N)=a+b;b是小数(0<=b<1),a是整数。
3.因为10的任何整数次幂首位一定为1,所以,M的首位只和N*log10(N)的小数部分有关,
#include<iostream> using namespace std; int main(){ int n,i,result; long long s; cin>>n; while(n--){ cin>>s; double x1 = s*log10( 1.0*s); double x2 = x1 - (long long)x1; result = 0; result = (int)pow(10.0,x2); cout<<result<<endl; } return 0; }
所以只用求10^b就可以了。(1<=10^b<10)
4.求出b也很简单,只要用double类型的(N*log10(N))去减去long long类型的(N*log10(N))。