导航

处理机管理——线程


进程是程序的一次执行。但这些功能显然不可能是由一个程序顺序处理就能实现的
有的进程可能需要“同时”做很多事,而传统的进程只能串行地执行一系列程序。为此,引入了“线程”,来增加并发度。

传统的进程是程序执行流的最小单位,引入线程后,线程成为了程序执行流的最小单位

可以把线程理解为“轻量级进程”
线程是一个基本的CPU执行单元,也是程序执行流的最小单位。引入线程之后,不仅是进程之间可以并发,进程内的各线程之间也可以并发,从而进一步提升了系统的并发度,使得一个进程内也可以并发处理各种任务(如QQ视频、文字聊天、传文件)
引入线程后,进程只作为除CPU之外的系统资源的分配单元(如打印机、内存地址空间等都是分配给进程的)。

变化:
1.资源分配、调度
传统进程机制中,进程是资分配、调度的基本单位
引入线程后,进程是资源分配的基本单位,线程是调度的基本单位
2.并发性
传统进程机制中,只能进程间并发
引入线程后,各线程间也能并发,提升了并发度
3.系统开销
传统的进程间并发,需要切换进程的运行环境,系统开销很大
线程间并发,如果是同一进程内的线程切换,则不需要切换进程环境,系统开销小
引入线程后,并发所带来的系统开销减小

属性:
线程是处理机调度的单位
多CPU计算机中,各个线程可占用不同的CPU
每个线程都有一个线程ID、线程控制块(TCB)
线程也有就绪、阻塞、运行三种基本状态
线程几乎不拥有系统资源
同一进程的不同线程间共享进程的资源
由于共享内存地址空间,同一进程中的线程间通信甚至无需系统干预
同一进程中的线程切换,不会引起进程切换
不同进程中的线程切换,会引起进程切换
切换同进程内的线程,系统开销很小
切换进程,系统开销较大

用户级线程ULT:
用户级线程由应用程序通过线程库实现。所有的线程管理工作都由应用程序负责(包
括线程切换)
用户级线程中,线程切换可以在用户态下即可完成,无需操作系统干预。
在用户看来,是有多个线程。但是在操作系统内核看来,并意识不到线程的存在。(用户级线程对用户不透明,对操作系统透明)可以这样理解,“用户级线程”就是“从用户视角看能看到的线程”

内核级线程KLT:
内核级线程的管理工作由操作系统内核完成。线程调度、切换等工作都由内核负责,因此内核级线程的切换必然需要在核心态下才能完成。可以这样理解,“内核级线程”就是“从操作系统内核视角看能看到的线程”

线程实现方式:
在同时支持用户级线程和内核级线程的系统中,可采用二者组合的方式:将n个用户级线程映射到m个内核级线程上(N>=m)
重点重点重点:
操作系统只“看得见”内核级线程,因此只有内核级线程才是处理机分配的单位。

多线程模型:
在同时支持用户级线程和内核级线程的系统中,由几个用户级线程映射到几个内核级线程的问题引出了“多线程模型”问题。
多对一模型:
多个用户级线程映射到一个内核级线程。每个用户进程只对应一个内核级线程。
优点:用户级线程的切换在用户空间即可完成,不需要切换到核心态,线程管理的系统开销小,效率高
缺点:当一个用户级线程被阻塞后,整个进程都会阻塞,并发度不高。多个线程不可
在多核处理机上并行运行
一对一模型:
一个用户及线程映射到一个内核级线程。每个用户进程有与用户级线程同数量的内核级线程。
优点:当一个线程被阻塞后,别的线程还可以继续执行,并发能力强。多线程可在多核处理机上并行执行。
缺点:一个用户进程会占用多个内核级线程,线程切换由操作系统内核完成,需要切换到核心态,因此线程管理的成本高,开销大。
多对多模型:
n用户及线程映射到m个内核级线程(n>=m)。每个用户进程对应m个内核级线程。克服了多对一模型并发度不高的缺点,又克服了一对一模型中一个用户进程占用太多内核级线程,开销太大的缺点。










posted on 2022-04-19 22:42  理想主义者的长征路  阅读(90)  评论(0编辑  收藏  举报