Mysql-窗口函数

学习连接:https://blog.csdn.net/weixin_39010770/article/details/87862407

 

 

窗口:记录集合
窗口函数:在满足某些条件的记录集合上执行的特殊函数,对于每条记录都要在此窗口内执行函数。有的函数随着记录的不同,窗口大小都是固定的,称为 静态窗口;有的函数则相反,不同的记录对应着不同的窗口,称为 滑动窗口

1. 窗口函数和普通聚合函数的区别:

①聚合函数是将多条记录聚合为一条;窗口函数是每条记录都会执行,有几条记录执行完还是几条。
②聚合函数也可以用于窗口函数。

2. 窗口函数的基本用法:

函数名 OVER 子句

over关键字 用来指定函数执行的窗口范围,若后面括号中什么都不写,则意味着窗口包含满足WHERE条件的所有行,窗口函数基于所有行进行计算;如果不为空,则支持以下4中语法来设置窗口。
①window_name:给窗口指定一个别名。如果SQL中涉及的窗口较多,采用别名可以看起来更清晰易读;
PARTITION BY 子句:窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行;
ORDER BY子句:按照哪些字段进行排序,窗口函数将按照排序后的记录顺序进行编号;
FRAME子句FRAME 是当前分区的一个子集,子句用来定义子集的规则,通常用来作为滑动窗口使用。

# 先看一个例子
SELECT 
    stu_id,
    score,
    sum(score) OVER (PARTITION BY stu_id) AS score_order
FROM t_score;

+--------+-------+-------------+
| stu_id | score | score_order |
+--------+-------+-------------+
|      1 |    90 |         439 |
|      1 |    95 |         439 |
|      1 |    84 |         439 |
|      1 |    75 |         439 |
|      1 |    95 |         439 |
|      2 |    88 |         420 |
|      2 |    68 |         420 |
|      2 |    98 |         420 |
|      2 |    88 |         420 |
|      2 |    78 |         420 |
|      3 |    90 |         427 |
|      3 |    68 |         427 |
|      3 |    85 |         427 |
|      3 |    89 |         427 |
|      3 |    95 |         427 |
|      4 |    68 |         420 |
|      4 |    87 |         420 |
|      4 |    93 |         420 |
|      4 |    87 |         420 |
|      4 |    85 |         420 |
|      5 |    92 |         360 |
|      5 |    92 |         360 |
|      5 |    91 |         360 |
|      5 |    85 |         360 |
+--------+-------+-------------+

 

3. 按功能划分可将MySQL支持的窗口函数分为如下几类:

①序号函数:ROW_NUMBER()RANK()DENSE_RANK()
  • 用途:显示分区中的当前行号
  • 应用场景:查询每个学生的分数最高的前3门课程
ROW_NUMBER() OVER (PARTITION BY stu_id ORDER BY score)

 

SELECT *
FROM (
    SELECT stu_id, ROW_NUMBER() OVER (PARTITION BY stu_id ORDER BY score DESC) AS score_order, lesson_id, score
    FROM t_score
) t
WHERE score_order <= 3;

+--------+-------------+-----------+-------+
| stu_id | score_order | lesson_id | score |
+--------+-------------+-----------+-------+
|      1 |           1 | L002      |    95 |
|      1 |           2 | L005      |    95 |
|      1 |           3 | L001      |    90 |
|      2 |           1 | L003      |    98 |
|      2 |           2 | L001      |    88 |
|      2 |           3 | L004      |    88 |
|      3 |           1 | L005      |    95 |
|      3 |           2 | L001      |    90 |
|      3 |           3 | L004      |    89 |
|      4 |           1 | L003      |    93 |
|      4 |           2 | L002      |    87 |
|      4 |           3 | L004      |    87 |
|      5 |           1 | L001      |    92 |
|      5 |           2 | L002      |    92 |
|      5 |           3 | L003      |    91 |
+--------+-------------+-----------+-------+

 

对于 stu_id=1 的同学,有两门课程的成绩均为98,序号随机排了1和2。但很多情况下二者应该是并列第一,则他的成绩为88的这门课的序号可能是第2名,也可能为第3名。
这时候,ROW_NUMBER() 就不能满足需求,需要 RANK() 和 DENSE_RANK() 出场,它们和 ROW_NUMBER() 非常类似,只是在出现重复值时处理逻辑有所不同。

 

ROW_NUMBER():顺序排序——123
RANK():并列排序,跳过重复序号——113
DENSE_RANK():并列排序,不跳过重复序号——112
SELECT *
FROM (
    SELECT 
        ROW_NUMBER() OVER (PARTITION BY stu_id ORDER BY score DESC) AS score_order1, 
        RANK() OVER (PARTITION BY stu_id ORDER BY score DESC) AS score_order2,
        DENSE_RANK() OVER (PARTITION BY stu_id ORDER BY score DESC) AS score_order3,
        stu_id, lesson_id, score
    FROM t_score
) t
WHERE stu_id = 1
    AND score_order1 <= 3
    AND score_order2 <= 3
    AND score_order3 <= 3;

+--------------+--------------+--------------+--------+-----------+-------+
| score_order1 | score_order2 | score_order3 | stu_id | lesson_id | score |
+--------------+--------------+--------------+--------+-----------+-------+
|            1 |            1 |            1 |      1 | L002      |    95 |
|            2 |            1 |            1 |      1 | L005      |    95 |
|            3 |            3 |            2 |      1 | L001      |    90 |
+--------------+--------------+--------------+--------+-----------+-------+

 

②分布函数:PERCENT_RANK()CUME_DIST()
PERCENT_RANK()
  • 用途:每行按照公式 (rank-1) / (rows-1) 进行计算。其中,rank 为 RANK() 函数产生的序号,rows 为当前窗口的记录总行数
  • 应用场景:不常用
给窗口指定别名:WINDOW w AS (PARTITION BY stu_id ORDER BY score)
rows = 5

 

SELECT RANK() OVER w AS rk, PERCENT_RANK() OVER w AS prk, stu_id, lesson_id, score
FROM t_score
WHERE stu_id = 1
WINDOW w AS (PARTITION BY stu_id ORDER BY score);

+----+------+--------+-----------+-------+
| rk | prk  | stu_id | lesson_id | score |
+----+------+--------+-----------+-------+
|  1 |    0 |      1 | L004      |    75 |
|  2 | 0.25 |      1 | L003      |    84 |
|  3 |  0.5 |      1 | L001      |    90 |
|  4 | 0.75 |      1 | L002      |    95 |
|  4 | 0.75 |      1 | L005      |    95 |
+----+------+--------+-----------+-------+

 

CUME_DIST()
  • 用途:分组内小于、等于当前rank值的行数 / 分组内总行数
  • 应用场景:查询小于等于当前成绩(score)的比例
cd1:没有分区,则所有数据均为一组,总行数为8
cd2:按照 lesson_id 分成了两组,行数各为4

 

SELECT stu_id, lesson_id, score, CUME_DIST() OVER (ORDER BY score) AS cd1
    , CUME_DIST() OVER (PARTITION BY lesson_id ORDER BY score) AS cd2
FROM t_score
WHERE lesson_id IN ('L001', 'L002');

+--------+-----------+-------+-----+-----+
| stu_id | lesson_id | score | cd1 | cd2 |
+--------+-----------+-------+-----+-----+
|      4 | L001      |    68 | 0.3 | 0.2 |
|      2 | L001      |    88 | 0.5 | 0.4 |
|      1 | L001      |    90 | 0.7 | 0.8 |
|      3 | L001      |    90 | 0.7 | 0.8 |
|      5 | L001      |    92 | 0.9 |   1 |
|      2 | L002      |    68 | 0.3 | 0.4 |
|      3 | L002      |    68 | 0.3 | 0.4 |
|      4 | L002      |    87 | 0.4 | 0.6 |
|      5 | L002      |    92 | 0.9 | 0.8 |
|      1 | L002      |    95 |   1 |   1 |
+--------+-----------+-------+-----+-----+

 

③前后函数:LAG(expr,n)LEAD(expr,n)
  • 用途:返回位于当前行的前n行(LAG(expr,n))或后n行(LEAD(expr,n))的expr的值
  • 应用场景:查询前1名同学的成绩和当前同学成绩的差值
内层SQL先通过 LAG()函数 得到前1名同学的成绩,外层SQL再将当前同学和前1名同学的成绩做差得到成绩差值 diff

 

SELECT stu_id, lesson_id, score, pre_score
    , score - pre_score AS diff
FROM (
    SELECT stu_id, lesson_id, score
        , LAG(score, 1) OVER w AS pre_score
    FROM t_score
    WHERE lesson_id IN ('L001', 'L002')
    WINDOW w AS (PARTITION BY lesson_id ORDER BY score)
) t;

+--------+-----------+-------+-----------+------+
| stu_id | lesson_id | score | pre_score | diff |
+--------+-----------+-------+-----------+------+
|      4 | L001      |    68 |      NULL | NULL |
|      2 | L001      |    88 |        68 |   20 |
|      1 | L001      |    90 |        88 |    2 |
|      3 | L001      |    90 |        90 |    0 |
|      5 | L001      |    92 |        90 |    2 |
|      2 | L002      |    68 |      NULL | NULL |
|      3 | L002      |    68 |        68 |    0 |
|      4 | L002      |    87 |        68 |   19 |
|      5 | L002      |    92 |        87 |    5 |
|      1 | L002      |    95 |        92 |    3 |
+--------+-----------+-------+-----------+------+

 

④头尾函数:FIRST_VALUE(expr)LAST_VALUE(expr)
  • 用途:返回第一个(FIRST_VALUE(expr))或最后一个(LAST_VALUE(expr))expr的值
  • 应用场景:截止到当前成绩,按照日期排序查询第1个和最后1个同学的分数
添加新列:
mysql> ALTER TABLE t_score ADD create_time DATE;

 

SELECT stu_id, lesson_id, score, create_time
    , FIRST_VALUE(score) OVER w AS first_score, LAST_VALUE(score) OVER w AS last_score
FROM t_score
WHERE lesson_id IN ('L001', 'L002')
WINDOW w AS (PARTITION BY lesson_id ORDER BY create_time);

+--------+-----------+-------+-------------+-------------+------------+
| stu_id | lesson_id | score | create_time | first_score | last_score |
+--------+-----------+-------+-------------+-------------+------------+
|      3 | L001      |   100 | 2018-08-07  |         100 |        100 |
|      1 | L001      |    98 | 2018-08-08  |         100 |         98 |
|      2 | L001      |    84 | 2018-08-09  |         100 |         99 |
|      4 | L001      |    99 | 2018-08-09  |         100 |         99 |
|      3 | L002      |    91 | 2018-08-07  |          91 |         91 |
|      1 | L002      |    86 | 2018-08-08  |          91 |         86 |
|      2 | L002      |    90 | 2018-08-09  |          91 |         90 |
|      4 | L002      |    88 | 2018-08-10  |          91 |         88 |
+--------+-----------+-------+-------------+-------------+------------+

 

⑤其它函数:NTH_VALUE(expr, n)NTILE(n)
NTH_VALUE(expr,n)
  • 用途:返回窗口中第n个 expr 的值。expr 可以是表达式,也可以是列名
  • 应用场景:截止到当前成绩,显示每个同学的成绩中排名第2和第3的成绩的分数
SELECT stu_id, lesson_id, score
    , NTH_VALUE(score, 2) OVER w AS second_score
    , NTH_VALUE(score, 3) OVER w AS third_score
FROM t_score
WHERE stu_id IN (1, 2)
WINDOW w AS (PARTITION BY stu_id ORDER BY score);

+--------+-----------+-------+--------------+-------------+
| stu_id | lesson_id | score | second_score | third_score |
+--------+-----------+-------+--------------+-------------+
|      1 | L004      |    75 |         NULL |        NULL |
|      1 | L003      |    84 |           84 |        NULL |
|      1 | L001      |    90 |           84 |          90 |
|      1 | L002      |    95 |           84 |          90 |
|      1 | L005      |    95 |           84 |          90 |
|      2 | L002      |    68 |         NULL |        NULL |
|      2 | L005      |    78 |           78 |        NULL |
|      2 | L001      |    88 |           78 |          88 |
|      2 | L004      |    88 |           78 |          88 |
|      2 | L003      |    98 |           78 |          88 |
+--------+-----------+-------+--------------+-------------+

 

NTILE(n)
  • 用途:将分区中的有序数据分为n个等级,记录等级数
  • 应用场景:将每门课程按照成绩分成3组
SELECT NTILE(3) OVER w AS nf, stu_id, lesson_id, score
FROM t_score
WHERE lesson_id IN ('L001', 'L002')
WINDOW w AS (PARTITION BY lesson_id ORDER BY score);

+------+--------+-----------+-------+
| nf   | stu_id | lesson_id | score |
+------+--------+-----------+-------+
|    1 |      4 | L001      |    68 |
|    1 |      2 | L001      |    88 |
|    2 |      1 | L001      |    90 |
|    2 |      3 | L001      |    90 |
|    3 |      5 | L001      |    92 |
|    1 |      2 | L002      |    68 |
|    1 |      3 | L002      |    68 |
|    2 |      4 | L002      |    87 |
|    2 |      5 | L002      |    92 |
|    3 |      1 | L002      |    95 |
+------+--------+-----------+-------+

 

NTILE(n) 函数在数据分析中应用较多,比如由于数据量大,需要将数据平均分配到n个并行的进程分别计算,此时就可以用NTILE(n)对数据进行分组(由于记录数不一定被n整除,所以数据不一定完全平均),然后将不同桶号的数据再分配。

4. 聚合函数作为窗口函数:

  • 用途:在窗口中每条记录动态地应用聚合函数(SUM()AVG()MAX()MIN()COUNT()),可以动态计算在指定的窗口内的各种聚合函数值
  • 应用场景:截止到当前时间,查询 stu_id=1 的学生的累计分数、分数最高的科目、分数最低的科目
SELECT stu_id, lesson_id, score, create_time
    , FIRST_VALUE(score) OVER w AS first_score
  , LAST_VALUE(score) OVER w AS last_score FROM t_score WHERE lesson_id IN ('L001', 'L002') WINDOW w AS (PARTITION BY lesson_id ORDER BY create_time); +--------+-----------+-------+-------------+-----------+-----------+-----------+ | stu_id | lesson_id | score | create_time | score_sum | score_max | score_min | +--------+-----------+-------+-------------+-----------+-----------+-----------+ | 1 | L001 | 98 | 2018-08-08 | 184 | 98 | 86 | | 1 | L002 | 86 | 2018-08-08 | 184 | 98 | 86 | | 1 | L003 | 79 | 2018-08-09 | 263 | 98 | 79 | | 1 | L004 | 88 | 2018-08-10 | 449 | 98 | 79 | | 1 | L005 | 98 | 2018-08-10 | 449 | 98 | 79 | +--------+-----------+-------+-------------+-----------+-----------+-----------+

 

posted @ 2020-11-27 16:55  LXL_1  阅读(459)  评论(0编辑  收藏  举报