Kafka-API

第 4 章 Kafka API 实战

4.1 环境准备

1)启动 zk 和 kafka 集群,在 kafka 集群中打开一个消费者
 
[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first

 

2)导入 pom 依赖
<dependencies>
    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>0.11.0.0</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka -->
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka_2.12</artifactId>
        <version>0.11.0.0</version>
    </dependency>
</dependencies>

 

 

4.2 Kafka 生产者 Java API

4.2.1 创建生产者(过时的 API)

package com.atguigu.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

public class OldProducer {

    @SuppressWarnings("deprecation")
    public static void main(String[] args) {

        Properties properties = new Properties();
        properties.put("metadata.broker.list", "hadoop102:9092");
        properties.put("request.required.acks", "1");
        properties.put("serializer.class", "kafka.serializer.StringEncoder");

        Producer<Integer, String> producer = new Producer<Integer,String>(new
ProducerConfig(properties));

        KeyedMessage<Integer, String> message = new KeyedMessage<Integer, 
String>("first", "hello world");
        producer.send(message );
    }
}

 

 

4.2.2 创建生产者(新 API)

package com.atguigu.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class NewProducer {
  public static void main(String[] args) {
    Properties props
= new Properties();     // Kafka 服务端的主机名和端口号     props.put("bootstrap.servers", "hadoop103:9092");     // 等待所有副本节点的应答     props.put("acks", "all");     // 消息发送最大尝试次数     props.put("retries", 0);     // 一批消息处理大小     props.put("batch.size", 16384);     // 请求延时     props.put("linger.ms", 1);     // 发送缓存区内存大小     props.put("buffer.memory", 33554432);     // key 序列化     props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");     // value 序列化     props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    Producer
<String, String> producer = new KafkaProducer<>(props);     for (int i = 0; i < 50; i++) {       producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));     }     producer.close();   } }

  

 

4.2.3 创建生产者带回调函数(新 API)

 
[lxl@hadoop102 kafka]$ bin/kafka-topics.sh  --zookeeper hadoop102:2181 --create --topic second --partitions 3 --replication-factor 2
Created topic "second".

 

 

[lxl@hadoop102 kafka]$ bin/kafka-console-consumer.sh  --zookeeper hadoop102:2181 --topic second

 

 

package com.atlxl.producer;

import org.apache.kafka.clients.Metadata;
import org.apache.kafka.clients.producer.*;

import java.util.Properties;

public class CustomerProducer {

    public static void main(String[] args) {

        //配置信息
        Properties props = new Properties();
        // Kafka 服务端的主机名和端口号
        props.put("bootstrap.servers", "hadoop102:9092");
        // 等待所有副本节点的应答
        props.put("acks", "all");
        // 消息发送最大尝试次数(应答级别 )
        props.put("retries", 0);
        // 一批消息处理大小
        props.put("batch.size", 16384);
        // 请求延时
        props.put("linger.ms", 1);
        // 发送缓存区内存大小
        props.put("buffer.memory", 33554432);
        // key 序列化
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value 序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");


        KafkaProducer<String, String> producer = new KafkaProducer(props);

        for (int i = 0; i < 10; i++) {
            producer.send(new ProducerRecord<String, String>("second", String.valueOf(i)), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println(recordMetadata.partition() + "--" + recordMetadata.offset());
                    }else {
                        System.out.println("发送失败!");
                    }
                }
            });
        }

        //关闭资源
        producer.close();


    }
}

 

 

 

执行结果:

 

 

 

0--0
0--1
0--2
0--3
1--0
1--1
1--2
2--0
2--1
2--2

 

 

0
3
6
9
2
5
8
1
4
7

 

 
 
 

4.2.4 自定义分区生产者

0)需求:将所有数据存储到 topic 的第 0 号分区上
1)定义一个类实现 Partitioner 接口,重写里面的方法(过时 API) 
 
package com.atguigu.kafka;
import java.util.Map;
import kafka.producer.Partitioner;
public class CustomPartitioner implements Partitioner {   public CustomPartitioner() {     super();   }   @Override   public
int partition(Object key, int numPartitions) {     // 控制分区     return 0;   } }

 

 
2)自定义分区(新 API)
package com.atguigu.kafka;
import java.util.Map;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
public class CustomPartitioner implements Partitioner {   @Override   public void configure(Map
<String, ?> configs) {   }   @Override   public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {       // 控制分区       return 0;   }
  @Override   public void close() {
  } }

 

 
3)在代码中调用 
 
 
package com.atguigu.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class PartitionerProducer {   public static void main(String[] args) {
    Properties props
= new Properties();     // Kafka 服务端的主机名和端口号     props.put("bootstrap.servers", "hadoop103:9092");     // 等待所有副本节点的应答     props.put("acks", "all");     // 消息发送最大尝试次数     props.put("retries", 0);     // 一批消息处理大小     props.put("batch.size", 16384);     // 增加服务端请求延时     props.put("linger.ms", 1);     // 发送缓存区内存大小     props.put("buffer.memory", 33554432);     // key 序列化     props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");     // value 序列化     props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");     // 自定义分区     props.put("partitioner.class", "com.atguigu.kafka.CustomPartitioner");
    Producer
<String, String> producer = new KafkaProducer<>(props);     producer.send(new ProducerRecord<String, String>("first", "1", "atguigu"));
    producer.close(); } }

 

4)测试
  (1)在 hadoop102 上监控/opt/module/kafka/logs/目录下 first 主题 3 个分区的 log 日志动
态变化情况 
 
 
[atguigu@hadoop102 first-0]$ tail -f 00000000000000000000.log
[atguigu@hadoop102 first-1]$ tail -f 00000000000000000000.log
[atguigu@hadoop102 first-2]$ tail -f 00000000000000000000.log

 

(2)发现数据都存储到指定的分区了。 
 
 
 
 
测试:
package com.atlxl.producer;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

public class CustomerPartitioner implements Partitioner {


    public int partition(String s, Object o, byte[] bytes, Object o1, byte[] bytes1, Cluster cluster) {
        // 控制分区
        return 0;
    }

    public void close() {

    }

    public void configure(Map<String, ?> map) {

    }
}

 

package com.atlxl.producer;

import org.apache.kafka.clients.Metadata;
import org.apache.kafka.clients.producer.*;

import java.util.Properties;

public class CustomerProducer {

    public static void main(String[] args) {

        //配置信息
        Properties props = new Properties();
        // Kafka 服务端的主机名和端口号
        props.put("bootstrap.servers", "hadoop102:9092");
        // 等待所有副本节点的应答
        props.put("acks", "all");
        // 消息发送最大尝试次数(应答级别 )
        props.put("retries", 0);
        // 一批消息处理大小
        props.put("batch.size", 16384);
        // 请求延时
        props.put("linger.ms", 1);
        // 发送缓存区内存大小
        props.put("buffer.memory", 33554432);
        // key 序列化
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value 序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("partitioner.class", "com.atlxl.producer.CustomerPartitioner");


        KafkaProducer<String, String> producer = new KafkaProducer(props);

        for (int i = 0; i < 10; i++) {
            producer.send(new ProducerRecord<String, String>("second", String.valueOf(i)), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println(recordMetadata.partition() + "--" + recordMetadata.offset());
                    }else {
                        System.out.println("发送失败!");
                    }
                }
            });
        }

        //关闭资源
        producer.close();


    }
}

 

结果:

 

0--4
0--5
0--6
0--7
0--8
0--9
0--10
0--11
0--12
0--13

 

 

 

 

4.3 Kafka 消费者 Java API

4.3.1 高级 API

0)在控制台创建发送者 
 
 
1)创建消费者(过时 API)
package com.atguigu.kafka.consume;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

public class sfsfs {
}
import java.util.HashMap;
        import java.util.List;
        import java.util.Map;
        import java.util.Properties;
        import kafka.consumer.Consumer;
        import kafka.consumer.ConsumerConfig;
        import kafka.consumer.ConsumerIterator;
        import kafka.consumer.KafkaStream;
        import kafka.javaapi.consumer.ConsumerConnector;

public class CustomConsumer {
    @SuppressWarnings("deprecation")
    public static void main(String[] args) {
        Properties properties = new Properties();
        properties.put("zookeeper.connect", "hadoop102:2181");
        properties.put("group.id", "g1");
        properties.put("zookeeper.session.timeout.ms", "500");
        properties.put("zookeeper.sync.time.ms", "250");
        properties.put("auto.commit.interval.ms", "1000");
// 创建消费者连接器
        ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new
                ConsumerConfig(properties));
        HashMap<String, Integer> topicCount = new HashMap<>();
        topicCount.put("first", 1);
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap =
                consumer.createMessageStreams(topicCount);
        KafkaStream<byte[], byte[]> stream = consumerMap.get("first").get(0);
        ConsumerIterator<byte[], byte[]> it = stream.iterator();
        while (it.hasNext()) {
            System.out.println(new String(it.next().message()));
        }
    }
}

 

2)官方提供案例(自动维护消费情况)(新 API) 
 
package com.atguigu.kafka.consume;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class CustomNewConsumer {
    public static void main(String[] args) {
        Properties props = new Properties();
      // 定义 kakfa 服务的地址,不需要将所有 broker 指定上
        props.put("bootstrap.servers", "hadoop102:9092");
      // 制定 consumer group
        props.put("group.id", "test");
      // 是否自动确认 offset
        props.put("enable.auto.commit", "true");
      // 自动确认 offset 的时间间隔
        props.put("auto.commit.interval.ms", "1000");
      // key 的序列化类
        props.put("key.deserializer",
                "org.apache.kafka.common.serialization.StringDeserializer");
      // value 的序列化类
        props.put("value.deserializer",
                "org.apache.kafka.common.serialization.StringDeserializer");
      // 定义 consumer 
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
      // 消费者订阅的 topic, 可同时订阅多个
        consumer.subscribe(Arrays.asList("first", "second", "third"));
        while (true) {
      // 读取数据,读取超时时间为 100ms 
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n",
                        record.offset(), record.key(), record.value());
        }
    }
}

 

 
 
练习:
 
package com.atlxl.consumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Arrays;
import java.util.Properties;

public class CustomerConsumer {

    public static void main(String[] args) {

        //配置信息
        Properties props = new Properties();
        //kafka集群
        props.put("bootstrap.servers", "hadoop102:9092");
        //消费者组id
        props.put("group.id", "test");
        //设置自动提交offset
        props.put("enable.auto.commit", "false");
        //提交延时
        props.put("auto.commit.interval.ms", "1000");
        //KV的反序列化
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");


        //创建消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

        //指定Topic
        consumer.subscribe(Arrays.asList("second", "first", "third"));

        while (true) {
            //获取数据
            ConsumerRecords<String, String> consumerRecords = consumer.poll(100);

            for (ConsumerRecord<String, String> record : consumerRecords) {
                System.out.println(record.topic() + "--" + record.partition() + "--" + record.value());
            }
        }





    }
}

 

 

 

bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic second
bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic first

 

 

 

 

 

 
 

4.3.2 低级 API

实现使用低级 API 读取指定 topic,指定 partition,指定 offset 的数据。

 

 
3)代码: 
 
package com.atguigu;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.BrokerEndPoint;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.FetchResponse;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
public class SimpleExample {
    private List<String> m_replicaBrokers = new ArrayList<>();
    public SimpleExample() {
        m_replicaBrokers = new ArrayList<>();
    }
    public static void main(String args[]) {
        SimpleExample example = new SimpleExample();
        // 最大读取消息数量
        long maxReads = Long.parseLong("3");
        // 要订阅的 topic
        String topic = "test1";
        // 要查找的分区
        int partition = Integer.parseInt("0");
        // broker 节点的 ip
        List<String> seeds = new ArrayList<>();
        seeds.add("192.168.9.102");
        seeds.add("192.168.9.103");
        seeds.add("192.168.9.104");
        // 端口
        int port = Integer.parseInt("9092");
        try {
            example.run(maxReads, topic, partition, seeds, port);
        } catch (Exception e) {
            System.out.println("Oops:" + e);
            e.printStackTrace();
        }
    }
    public void run(long a_maxReads, String a_topic, int a_partition, List<String>
            a_seedBrokers, int a_port) throws Exception {
        // 获取指定 Topic partition 的元数据
        PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic,
                a_partition);
        if (metadata == null) {
            System.out.println("Can't find metadata for Topic and Partition. Exiting");
            return;
        }
        if (metadata.leader() == null) {
            System.out.println("Can't find Leader for Topic and Partition. Exiting");
            return;
        }
        String leadBroker = metadata.leader().host();
        String clientName = "Client_" + a_topic + "_" + a_partition;
        SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 *
                1024, clientName);
        long readOffset = getLastOffset(consumer, a_topic, a_partition,
                kafka.api.OffsetRequest.EarliestTime(), clientName);
        int numErrors = 0;
        while (a_maxReads > 0) {
            if (consumer == null) {
                consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024,
                        clientName);
            }
            FetchRequest req = new
                    FetchRequestBuilder().clientId(clientName).addFetch(a_topic, a_partition,
                    readOffset, 100000).build();
            FetchResponse fetchResponse = consumer.fetch(req);
            if (fetchResponse.hasError()) {
                numErrors++;
                // Something went wrong!
                short code = fetchResponse.errorCode(a_topic, a_partition);
                System.out.println("Error fetching data from the Broker:" + leadBroker
                        + " Reason: " + code);
                if (numErrors > 5)
                    break;
                if (code == ErrorMapping.OffsetOutOfRangeCode()) {
                    // We asked for an invalid offset. For simple case ask for
                    // the last element to reset
                    readOffset = getLastOffset(consumer, a_topic, a_partition,
                            kafka.api.OffsetRequest.LatestTime(), clientName);
                    continue;
                }
                consumer.close();
                consumer = null;
                leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
                continue;
            }
            numErrors = 0;
            long numRead = 0;
            for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic,
                    a_partition)) {
                long currentOffset = messageAndOffset.offset();
                if (currentOffset < readOffset) {
                    System.out.println("Found an old offset: " + currentOffset + " 
                            Expecting: " + readOffset);
                    continue;
                }
                readOffset = messageAndOffset.nextOffset();
                ByteBuffer payload = messageAndOffset.message().payload();
                byte[] bytes = new byte[payload.limit()];
                payload.get(bytes);
                System.out.println(String.valueOf(messageAndOffset.offset()) + ": " +
                        new String(bytes, "UTF-8"));
                numRead++;
                a_maxReads--;
            }
            if (numRead == 0) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException ie) {
                }
            }
        }
        if (consumer != null)
            consumer.close();
    }
    public static long getLastOffset(SimpleConsumer consumer, String topic, int
            partition, long whichTime, String clientName) {
        TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
        Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new
                HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
        requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime,
                1));
        kafka.javaapi.OffsetRequest request = new
                kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(),
                clientName);
        OffsetResponse response = consumer.getOffsetsBefore(request);
        if (response.hasError()) {
            System.out.println("Error fetching data Offset Data the Broker. Reason: "
                    + response.errorCode(topic, partition));
            return 0;
        }
        long[] offsets = response.offsets(topic, partition);
        return offsets[0];
    }
    private String findNewLeader(String a_oldLeader, String a_topic, int a_partition,
                                 int a_port) throws Exception {
        for (int i = 0; i < 3; i++) {
            boolean goToSleep = false;
            PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic,
                    a_partition);
            if (metadata == null) {
                goToSleep = true;
            } else if (metadata.leader() == null) {
                goToSleep = true;
            } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i ==
                    0) {
                // first time through if the leader hasn't changed give
                // ZooKeeper a second to recover
                // second time, assume the broker did recover before failover,
                // or it was a non-Broker issue
                //
                goToSleep = true;
            } else {
                return metadata.leader().host();
            }
            if (goToSleep) {
                Thread.sleep(1000);
            }
        }
        System.out.println("Unable to find new leader after Broker failure. Exiting");
        throw new Exception("Unable to find new leader after Broker failure. Exiting");
    }
    private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port,
                                         String a_topic, int a_partition) {
        PartitionMetadata returnMetaData = null;
        loop:
        for (String seed : a_seedBrokers) {
            SimpleConsumer consumer = null;
            try {
                consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024,
                        "leaderLookup");
                List<String> topics = Collections.singletonList(a_topic);
                TopicMetadataRequest req = new TopicMetadataRequest(topics);
                kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
                List<TopicMetadata> metaData = resp.topicsMetadata();
                for (TopicMetadata item : metaData) {
                    for (PartitionMetadata part : item.partitionsMetadata()) {
                        if (part.partitionId() == a_partition) {
                            returnMetaData = part;
                            break loop;
                        }
                    }
                }
            } catch (Exception e) {
                System.out.println("Error communicating with Broker [" + seed + "] to 
                        find Leader for [" + a_topic + ", " + a_partition + "] Reason: " + e);
            } finally {
                if (consumer != null)
                    consumer.close();
            }
        }
        if (returnMetaData != null) {
            m_replicaBrokers.clear();
            for (BrokerEndPoint replica : returnMetaData.replicas()) {
                m_replicaBrokers.add(replica.host());
            }
        }
        return returnMetaData;
    }
}

 

 
 
 练习代码:
package com.atlxl.consumer;

/*
根据指定的Topic,Partition,offset来获取数据
 */

import kafka.api.FetchRequestBuilder;
import kafka.cluster.BrokerEndPoint;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.javaapi.message.ByteBufferMessageSet;
import kafka.message.MessageAndOffset;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class LowerConsumer {


    public static void main(String[] args) {

        //定义相关参数
        ArrayList<String> brokers = new ArrayList<>();//kafka集群
        brokers.add("hadoop102");
        brokers.add("hadoop103");
        brokers.add("hadoop104");

        //端口号
        int port = 9092;

        //主题
        String topic = "second";

        //分区
        int partition = 0;

        //offset
        long offset = 2;


        LowerConsumer lowerConsumer = new LowerConsumer();
        lowerConsumer.getData(brokers,port,topic,partition,offset);


    }



    //找分区leader
    private BrokerEndPoint findLeader(List<String> brokers, int port, String topic, int partition) {

        for (String broker : brokers) {
            //创建获取分区leader的消费对象
            SimpleConsumer getLeader = new SimpleConsumer(broker, port, 100, 1024 * 4, "getLeader");

            //创建一个主题元数据请求
            TopicMetadataRequest topicMetadataRequest = new TopicMetadataRequest(Collections.singletonList(topic));

            //获取主题元数据返回值
            TopicMetadataResponse metadataResponse = getLeader.send(topicMetadataRequest);

            //解析元数据返回值
            List<TopicMetadata> topicsMetadata = metadataResponse.topicsMetadata();

            //遍历主题元数据
            for (TopicMetadata topicMetadatum : topicsMetadata) {
                //获取多个分区的元数据信息
                List<PartitionMetadata> partitionsMetadata = topicMetadatum.partitionsMetadata();
                //遍历分区元数据
                for (PartitionMetadata partitionMetadatum : partitionsMetadata) {
                    if (partition == partitionMetadatum.partitionId()){
                        return partitionMetadatum.leader();
                    }

                }
            }

        }



        return null;
    }



    //获取数据
    private void getData(List<String> brokers, int port, String topic, int partition, long offset) {

        //获取分区leader
        BrokerEndPoint leader = findLeader(brokers, port, topic, partition);
        if (leader == null) {
            return;
        }

        //获取数据的消费者对象
        String leaderHost = leader.host();
        SimpleConsumer getData = new SimpleConsumer(leaderHost, port, 1000, 1024 * 4, "getData");

        //创建获取数据的对象
        kafka.api.FetchRequest fetchRequest = new FetchRequestBuilder().addFetch(topic, partition, offset, 100000).build();

        //获取数据返回值
        FetchResponse fetchResponse = getData.fetch(fetchRequest);

        //解析返回值
        ByteBufferMessageSet messageAndOffsets = fetchResponse.messageSet(topic, partition);

        //遍历并打印
        for (MessageAndOffset messageAndOffset : messageAndOffsets) {
            long offset1 = messageAndOffset.offset();
            ByteBuffer payload = messageAndOffset.message().payload();
            byte[] bytes = new byte[payload.limit()];
            payload.get(bytes);
            System.out.println(offset1 + "--" + new String(bytes));
        }

    }

}

 

 

 
 
 扩展
[lxl@hadoop102 kafka]$ vi config/consumer.properties

 

 

 

 
[lxl@hadoop102 config]$ xsync consumer.properties

 

[lxl@hadoop102 config]$ bin/kafka-console-consumer.sh --topic __consumer_offsets --zookeeper hadoop102:2181 --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --consumer.config config/consumer.properties

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
posted @ 2019-06-10 23:34  LXL_1  阅读(224)  评论(0编辑  收藏  举报