HDU2767Proving Equivalences tarjan缩点,如何求入度和出度最大值


    给定一个有向图,问最少增加多少条边后变成强连通图
     tarjan求求强连通分量并缩点,如果强连通分量个数为1,则需要边数为0,
   否则为缩点后点入度和出度的最大值,
   证明:当入度或者出度不为0时,则可以通过传递性使其相同,所以只需要考虑入度或者出度为0的点
   即可。因为要求增加尽量少的边,所以将入度和出度都为0的点相连,边的方向为出度为0的指向入度为0的顶点。
   当入度为0或者出度为0的点有剩余时,则任意取一个点进行连边。
    所以当有向图为强连通图时答案为0,否则最小值为入度和入度的最大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 20005;
const int maxm = 100005;
struct node{
    int v,next;
}edge[maxm];
int head[maxn],low[maxn],dfn[maxn],sta[maxn],in[maxn],out[maxn],belong[maxn],vis[maxm];
int Time,id,top,num,total;
void add_edge(int u,int v){
    edge[id].v = v;edge[id].next = head[u];head[u] = id++;
}
void tarjan(int u){
    low[u] = dfn[u] = ++Time;
    sta[top++] = u;in[u] = 1;
    for(int id = head[u]; id != -1; id = edge[id].next){
        int v = edge[id].v;
        if(!dfn[v]){
            tarjan(v);
            if( low[u] < low[v])total++;
            low[u] = min(low[u],low[v]);
        }
        else if( in[v] )low[u] = min(low[u],low[v]);
    }
    if( low[u] == dfn[u]){
        num ++;
        do{
            int t = sta[--top];
            in[t] = 0;
            belong[t] = num;
        }while( sta[top] != u);
    }
}
int main(){

    int t;
    int n,m;
    int u,v;
    int cnt;
    scanf("%d",&t);
    while( t-- ){
        scanf("%d%d",&n,&m);
        memset(head,-1,sizeof(head)),id = 0;
        while( m-- ){
            scanf("%d%d",&u,&v);
            add_edge(u,v);
        }
        memset(dfn,0,sizeof(dfn));
        Time = num = total = cnt = 0;
        for(int i = 1; i <= n;i++){
            if(!dfn[i])
                tarjan(i);
        }
        if( num == 1){puts("0");continue;}
        memset(in,0,sizeof(in));
        memset(out,0,sizeof(out));
        for(int u = 1; u <= n; u++){
            for(int id = head[u]; id != -1; id = edge[id].next){
                int v = edge[id].v;
                if( belong[u] != belong[v]){
                    in[belong[v]]++;out[belong[u]]++;
                }
            }
        }
        int indeg = 0,outdeg = 0;
        for(int i = 1; i <= num; i++){
            if( !in[i])indeg ++;
            if( !out[i])outdeg++;
        }
        printf("%d\n",indeg > outdeg ? indeg : outdeg);
    }
    return 0;
}

 

posted @ 2013-09-04 20:42  一生挚爱  阅读(696)  评论(0编辑  收藏  举报