HDU2767Proving Equivalences tarjan缩点,如何求入度和出度最大值
给定一个有向图,问最少增加多少条边后变成强连通图
tarjan求求强连通分量并缩点,如果强连通分量个数为1,则需要边数为0,
否则为缩点后点入度和出度的最大值,
证明:当入度或者出度不为0时,则可以通过传递性使其相同,所以只需要考虑入度或者出度为0的点
即可。因为要求增加尽量少的边,所以将入度和出度都为0的点相连,边的方向为出度为0的指向入度为0的顶点。
当入度为0或者出度为0的点有剩余时,则任意取一个点进行连边。
所以当有向图为强连通图时答案为0,否则最小值为入度和入度的最大值
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 20005; const int maxm = 100005; struct node{ int v,next; }edge[maxm]; int head[maxn],low[maxn],dfn[maxn],sta[maxn],in[maxn],out[maxn],belong[maxn],vis[maxm]; int Time,id,top,num,total; void add_edge(int u,int v){ edge[id].v = v;edge[id].next = head[u];head[u] = id++; } void tarjan(int u){ low[u] = dfn[u] = ++Time; sta[top++] = u;in[u] = 1; for(int id = head[u]; id != -1; id = edge[id].next){ int v = edge[id].v; if(!dfn[v]){ tarjan(v); if( low[u] < low[v])total++; low[u] = min(low[u],low[v]); } else if( in[v] )low[u] = min(low[u],low[v]); } if( low[u] == dfn[u]){ num ++; do{ int t = sta[--top]; in[t] = 0; belong[t] = num; }while( sta[top] != u); } } int main(){ int t; int n,m; int u,v; int cnt; scanf("%d",&t); while( t-- ){ scanf("%d%d",&n,&m); memset(head,-1,sizeof(head)),id = 0; while( m-- ){ scanf("%d%d",&u,&v); add_edge(u,v); } memset(dfn,0,sizeof(dfn)); Time = num = total = cnt = 0; for(int i = 1; i <= n;i++){ if(!dfn[i]) tarjan(i); } if( num == 1){puts("0");continue;} memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); for(int u = 1; u <= n; u++){ for(int id = head[u]; id != -1; id = edge[id].next){ int v = edge[id].v; if( belong[u] != belong[v]){ in[belong[v]]++;out[belong[u]]++; } } } int indeg = 0,outdeg = 0; for(int i = 1; i <= num; i++){ if( !in[i])indeg ++; if( !out[i])outdeg++; } printf("%d\n",indeg > outdeg ? indeg : outdeg); } return 0; }