[洛谷 P4170] CQOI2007 涂色

问题描述

假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。

每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。

用尽量少的涂色次数达到目标。

输入格式

输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。

输出格式

仅一行,包含一个数,即最少的涂色次数。

样例输入输出

样例输入1

AAAAA

样例输出1

1

样例输入2

RGBGR

样例输出2

3

数据范围

40%的数据满足:1<=n<=10

100%的数据满足:1<=n<=50

解析

\(f[i][j]\)表示将区间[i,j]内染成对应的颜色的最少操作步数。考虑当i与j的颜色相同时,只需要在首次涂区间[i+1,j]或[i,j-1]的色时多涂一格(反正要满足i或j也是这个颜色),因此有

\[f[i][j]=min(f[i+1][j],f[i][j-1]) \]

当i与j颜色不同时,我们可以将这个区间的状态拆成两个子区间合并,枚举断点k,有

\[f[i][j]=min(f[i][k]+f[k+1][j]) \]

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 52
using namespace std;
char c[N];
int n,i,j,k,l,f[N][N];
int main()
{
	cin>>c;
	n=strlen(c);
	memset(f,0x3f,sizeof(f));
	for(i=n;i>=1;i--) c[i]=c[i-1];
	for(l=1;l<=n;l++){
		for(i=1;i+l-1<=n;i++){
			j=i+l-1;
			if(i==j) f[i][j]=1;
			else if(c[i]==c[j]) f[i][j]=min(f[i+1][j],f[i][j-1]);
			for(k=i;k<=j;k++) f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
		}
	}
	cout<<f[1][n]<<endl;
	return 0;
}
posted @ 2019-10-05 14:05  CJlzf  阅读(176)  评论(0编辑  收藏  举报