0_overview

0. curse of high-dimension

1. the historty of object detection

2. iccv2009-multiclass

  1. Sharing invariances
    • object recognition is invariant to rotation, translation, scaling, lighting, …
    • typical case: cnn(convolutional layer and pooling layer)
  2. Sharing transformations
    • Transformations are shared
      and can be learnt from other tasks
    • style transfer
  3. Sharing in constellation models
  4. Sharing patches

3. cvpr2007-part3

  1. classficator-discriminative methods
    • nearest neighbor
    • cnn
    • svm+kernel
    • CRF
  2. classficator-boosting
    • Cascade of classifiers 【级联分类器,能综合各个分类器的优势】

4. slides of ICCV 2005 by Li Fei-Fei 【非常好的tutorial,值得反复看】

  1. obj det 的方法的最早分类

    • bag of words models
    • parts-based models
    • discriminative methods
    • three main issues:
      • Representation
        How to represent an object category
      • Learning
        How to form the classifier, given training data
      • Recognition
        How the classifier is to be used on novel data
  2. Representation

    • Generative / discriminative / hybrid
    • Appearance only or location and appearance
    • Invariances:
      View point
      Illumination
      Occlusion
      Scale
      Deformation
      Clutter
      etc.
    • Part-based or global w/sub-window
    • Use set of features or each pixel in image
  3. Learning:

    • Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
    • Methods of training: generative vs. discriminative
      (generativie 是用高斯混合模型去拟合两类obj的样本点;discriminative是尝试找一个分界面来划分两类obj样本点;假设这里是两类obj)
    • Level of supervision
      Manual segmentation; bounding box; image labels; noisy labels
    • Batch/incremental (on category and image level; user-feedback )
    • Training images:
      Issue of overfitting
      Negative images for discriminative methods Priors
    • Priors
  4. Recognition

    • Scale / orientation range to search over
    • Speed
  5. Bag-of-words models
    见ppt 【这个tutorial ppt非常赞!需要时可以拿来反复揣摩】

  6. part-based models
    见PPT 【依旧赞!】

  7. discriminative models
    见ppt 【赞!】

  8. concurrent segmentation and recognition
    见ppt 【赞!】

参考:

[1]. http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
[2]. 【"patch" in an image】 https://www.quora.com/What-is-a-patch-in-image-processing

posted @ 2019-02-14 21:07  hzhang_NJU  阅读(146)  评论(0编辑  收藏  举报