蓝桥杯备赛指南

蓝桥杯备赛指南

大学C组

枚举

from enum import Enum
class Weekday(Enum):
    monday = 1
    tuesday = 2
    wednesday = 3
    thirsday = 4
    friday = 5
    saturday = 6
    sunday = 7
 
print(Weekday.wednesday)         # Weekday.wednesday      
print(type(Weekday.wednesday))   # <enum 'Weekday'>
print(Weekday.wednesday.name)    # wednesday
print(Weekday.wednesday.value)   # 3

排序

冒泡排序

def bubble_sort_with_flag(nums:list[int]) -> list[int]:
    n = len(nums)
    for i in range(n-1, 0, -1):
        flag = False
        for j in range(0, i):
            if nums[j] > nums[j+1]:
                nums[j], nums[j+1] = nusm[j+1], nums[j]
                flags = True

        if not flag:
            break

    return nums

选择排序

def selection_sort(nums:list[int]) -> list[int]:
    n = len(nums)
    for i in range(n):
        k = i
        for j in range(i+1, n):
            if nums[k] > nums[j]:
                k = j
        
        nums[i], nums[k] = nums[k], nums[i]

    return nums

插入排序

def insertion_sort(nums:list[int]) -> list[int]:
    n = len(nums)
    for i in range(1, n):
        base = nums[i]
        j = i-1
        while j >= 0 and nums[j] > base:
            nums[j+1] = nums[j]
            j -= 1

        nums[j] = nums[base]

    return nums

搜索

BFS

def graph_bfs(graph:GraphAdjList, start_vet:Vertex) -> list[Vertex]:
    res = []
    visited = {start_vet}
    que = deque(start_vet)

    while que > 0:
        vet = que.popleft()
        res.append(vet)
        for adj_vet in garpg.adj_list:
            if adj_vet in visited:
                countinue
            visited.add(adj_vet)
            que.append(adj_vet)
    return res            

DFS

def dfs(graph:GraphAdjList, visited:{Vertex}, res:list[Vertex], vet:Vertex):
    '''DFS辅助函数'''
    res.append(vet)
    visited.add(vet)
    for adj_vet in graph.adj_list:
        if adj_vet in visited:
            continue
        dfs(graph, visited, res, adj_vet)

def graph_dfs(graph:GraphAdjList, start_vet:Vertex) -> list[Vertex]:
    '''DFS主函数'''
    res = []
    visited = {start_vet}
    dfs(graph, visited, res, start_vet)
    return res

贪心算法

  1. 零钱兑换(局部最优)示例:

    零钱兑换:在一堆钱币中找到最接近要求限制的最大钱币总额。

    def coin_change_greedy(coins:list[int], amt:int) -> int:
        i = len(coins)  - 1
        count = 0
        while amt > 0:
            while i >0 and coins[i] > amt:
                i -= 1
            amt -= coins[i]
            count += 1
    
        return count if amt == 0 else -1
    
  2. 分数背包示例:

    选择一组物品,使得总重量不超过载重,且总价值最大。(可以选择物品的一部分,价值根据选择的重量的比例计算)

    class Item:
        '''物品'''
    
        def __init__(self, w:int, v:int):
            self.w = w # 物品重量
            self.v = v # 物品价值
    
    def fractional_knapsack(wgt:list[int], val:list[int], cap:int) -> int:
        '''分数背包:贪心'''
        items = [items(w, v) for w, v in zip(wgt, val)]
        items.sort(key=lambda item: item.v / item.w, reverse=True)
    
        res = 0
        for item in items:
            if item.w <= cap:
                res += item.v
                cap -= item.w
            else:
                res += (item.v / item.w) * cap
    
        return res
    
  3. 最大容量问题示例:

    通过移动短板最大化两个短板之间的容量(其容量主要在于其两板的短板和两板间距离)。

    def max_capacity(ht:list[int]) -> int:
        i, j = 0, len(ht) - 1
        res = 0
        while i < j:
            cap = min(ht[i], ht[j]) * (j - i)
            res = max(res, cap)
            if ht[i] < ht[j]:
                i += 1
            else:
                j -= 1
        return res
    
  4. 最大切分乘积问题示例:

    给定一个正整数,将其切分为至少两个正整数的和,使得切分后所有整数的乘积最大(数学证明可得,大于等于4的数都应该被切分)。

    def max_product_cutting(n:int) -> int:
        if n <= 3:
            return 1 * (n - 1)
        a, b = n // 3, n % 3
        if b == 1:
            return int(math.pow(3, a-1)) * 2 *2
        if b == 2:
            return int(math.pow())
    

模拟

  1. 螺旋矩阵:

    def spiralOrder(matrix:list[list[int]]) -> list[int]:
        res = []
        left = 0
        right = len(matrix[0])
        top = 0
        bottom = len(matrix)
        while right > left and bottom > top:
            res.extend(matrix[top][left:right])
            top += 1
            
            res.extend([matrix[i][right-1] for i in range(top, bottom)])
            right -= 1
        
            if top < bottom:
                res.extend(matrix[bottom-1][left:right][::-1])
                bottom -= 1
    
            if left < right:
                res.extend([matrix[j][left] for j in range(bottom-1, top-1, -1)])
                left += 1
    
        return res
    
posted @ 2024-04-02 13:13  LPF05  阅读(39)  评论(0编辑  收藏  举报