摘要:
传送门 首先每个点至少要有两条边连接 那么容易想到先保证这一点然后再慢慢加边 那么先构成一个环即可:$(1,2),(2,3),(3,4)...(n,1)$ 然后考虑加边,发现一个点加一条边还是合法的,那么不妨直接 $(1,4),(2,5),(3,6)$ ,然后一旦边数为质数了就直接输出答案 那么现在 阅读全文
摘要:
传送门 考虑一块块填,首先 $(1,1)$ 有 $4$ 种方案 然后根据 $(1,1)$ 的右边颜色,$(1,2)$ 有两种方案,$(1,3)$ 根据 $(1,2)$ 也有两种方案... 考虑 $(2,1)$ 根据 $(1,1)$ 有两种方案,$(3,1)$ 也有两种.... 然后发现,如果我们确定 阅读全文
摘要:
传送门 显然对每个 $o$ ,考虑左边和右边分别有多少 $w$,那么这个 $o$ 的贡献就是左右 $w$ 的出现次数相乘 $w$ 的出现次数可以直接根据每一段连续的 $v$ 得到 那么从左到右扫一遍,动态维护一下左右两边的 $w$ ,遇到 $o$ 就计算一下贡献即可 阅读全文
摘要:
传送门 注意到矩形往上是无限的,考虑把点按 $y$ 从大到小考虑 对于枚举到高度为 $h$ 的点,设当前高度大于等于 $h$ 的点的所有点的不同的 $x$ 坐标数量为 $cnt$ 那么对于这一层高度 $h$ 我们就有 $cnt(cnt+1)/2$ 种不同的 $l$,$r$ ,使得矩形内点集不同 发现 阅读全文
摘要:
传送门 注意到后手可以模仿先手的操作,那么如果一回合之内没法决定胜负则一定 $\text{once again!}$ 考虑如何判断一回合内能否决定胜负 首先如果最左边和最右的 $0$ 或 $1$ 距离小于等于 $k$,那么先手显然赢 如果最左边和最右的 $0$ 和 $1$ 中间都差了大于等于 $k$ 阅读全文
摘要:
传送门 不妨把每一堆按照石头数量从小到大排序 注意到每次只能拿一个石头,那么不论何时每堆石头的排名都是一样的 那么最终所有堆的状态一定就是 $0,1,2,...,n-1$,现在每一堆最终的石头数量都确定了 那么我们直接把每一堆的石头数量减去这一堆的排名,再加上 $1$,就得到每一堆能拿走的石头数量 阅读全文
摘要:
传送门 显然从左到右考虑每个要删除的数 维护一个 $cnt$ 表示之前已经删除了 $cnt$ 个数,那么当前所有要删除数的实际位置就要减去 $cnt$ 直接暴力枚举哪些数在最左边一个块然后一起删除 每个数删除一次复杂度 $O(n)$ 阅读全文