莫比乌斯反演的非卷积形式证明
\[f(n)=\sum_{i=1}^n t(i) g(\lfloor\frac ni\rfloor)\\
求g\\
推导(*为狄利克雷卷积\ ·为点乘):\\
f(n)=\sum_{i=1}^n t(i)\sum_{j=1}^{\lfloor\frac ni\rfloor}\Delta g(j)\\
=\sum_{i*j\leq n}^n t(i)\Delta g(j)\\
\therefore \Delta f(n)=\sum_{i|n}t(\frac ni)*\Delta g(i)=(t*\Delta g)(n)\\
\Delta g(n)=(\Delta f*t^{-1})(n)\\
g(n)=\sum_{i=1}^n(\Delta f*t^{-1})(i)\\
=\sum_{i=1}^n\sum_{j|i}\Delta f(\frac ij)t^{-1}(j)\\
=\sum_{i=1}^nt^{-1}(i)\sum_{k}^{\lfloor\frac ni\rfloor}\Delta f(k)\\
=\sum_{i=1}^nt^{-1}(i)f(\lfloor\frac ni\rfloor)\\
若t为完全积性函数则t^{-1}为t·\mu
\]