生成器

生成器函数

一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

import time
def genrator_fun1():
    a = 1
    print('现在定义了a变量')
    yield a
    b = 2
    print('现在又定义了b变量')
    yield b

g1 = genrator_fun1()
print('g1 : ',g1)       #打印g1可以发现g1就是一个生成器
print('-'*20)   #我是华丽的分割线
print(next(g1))
time.sleep(1)   #sleep一秒看清执行过程
print(next(g1))

初识生成器函数

从这可以说明生成器可以节省内存

#初识生成器二

def produce():
    """生产衣服"""
    for i in range(2000000):
        yield "生产了第%s件衣服"%i

product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g:         #要一批衣服,比如5件
    print(i)
    num +=1
    if num == 5:
        break

#到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿

初识生成器二

生成器的应用

import time


def tail(filename):
    f = open(filename)
    f.seek(0, 2) #从文件末尾算起
    while True:
        line = f.readline()  # 读取文件中新的文本行
        if not line:
            time.sleep(0.1)
            continue
        yield line

tail_g = tail('tmp')
for line in tail_g:
    print(line)

生成器监听文件输入的例子

对于 send的解释

def generator():
    print(123)
    content = yield 1
    print('=======',content)
    print(456)
    yield2

g = generator()
ret = g.__next__()
print('***',ret)
ret = g.send('hello')   #send的效果和next一样
print('***',ret)

#send 获取下一个值的效果和next基本一致
#只是在获取下一个值的时候,给上一yield的位置传递一个数据
#使用send的注意事项
    # 第一次使用生成器的时候 是用next获取下一个值
    # 最后一个yield不能接受外部的值

计算移动平均值

def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
next(g_avg)
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))

计算移动平均值(1)

计算移动平均值(2)_预激协程的装饰器

def init(func):  #在调用被装饰生成器函数的时候首先用next激活生成器
    def inner(*args,**kwargs):
        g = func(*args,**kwargs)
        next(g)
        return g
    return inner

@init
def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
# next(g_avg)   在装饰器中执行了next方法
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))

计算移动平均值(2)_预激协程的装饰器

yield from

def gen1():
    for c in 'AB':
        yield c
    for i in range(3):
        yield i

print(list(gen1()))

def gen2():
    yield from 'AB'
    yield from range(3)

print(list(gen2()))

yield from

列表推倒式和生成器表达式

总结:

1.把列表解析的[]换成()得到的就是生成器表达式

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

sum(x ** 2 for x in range(4))

而不用这样例子:

sum([x ** 2 for x in range(4)])

 

 

列表推导式

例一:30以内所有与能被3整除的数

multiples = [i for i in range(30) if i % 3 is 0]
print(multiples)
# Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

例二:30以内所有能被3整除的数的平方

def squared(x):
    return x*x
multiples = [squared(i) for i in range(30) if i % 3 is 0]
print(multiples)

例三:找到嵌套列表中名字含有两个‘e’的所有名字

names = [['Tom', 'Billy', 'Jefferson', 'Andrew', 'Wesley', 'Steven', 'Joe'],
         ['Alice', 'Jill', 'Ana', 'Wendy', 'Jennifer', 'Sherry', 'Eva']]

print([name for lst in names for name in lst if name.count('e') >= 2])  # 注意遍历顺序,这是实现的关键

字典推到式

例一:将一个字典的key和value对调

mcase = {'a': 10, 'b': 34}
mcase_frequency = {mcase[k]: k for k in mcase}
print(mcase_frequency)

例二:合并大小写对应的value值,将k统一成小写

mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}
mcase_frequency = {k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0) for k in mcase.keys()}
print(mcase_frequency)

集合推导式

squared = {x**2 for x in [1, -1, 2]}
print(squared)
# Output: set([1, 4])

 

posted @ 2018-11-14 22:21  7411  阅读(217)  评论(0编辑  收藏  举报