Squares(哈希)

Time Limit: 3500MS   Memory Limit: 65536K
Total Submissions: 14328   Accepted: 5393

Description

A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a regular octagon also has this property. 

So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates. 

Input

The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.

Output

For each test case, print on a line the number of squares one can form from the given stars.

Sample Input

4
1 0
0 1
1 1
0 0
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
4
-2 5
3 7
0 0
5 2
0

Sample Output

1
6
1
题意:给出n个点的坐标,计算这些点可以构成多少个正方形,不同顺序的相同四个点被视为同一个正方形。

思路:这里n最大是1000,显然一个点一个点的枚举不行。参考了别人的结题报告,据说有这样的定理:
   已知(x1,y1) 和 (x2,y2)

x3 = x1 + (y1-y2); y3 = y1 - (x1-x2);
x4 = x2 +(y1-y2; y4 = y2 - (x1-x2);

x3 = x1 - (y1-y2); y3 = y1 + (x1-x2);
x4 = x2 - (y1-y2); y4 = y2 + (x1-x2);
因此可以先枚举两个点,根据这两个点(点1 ,点2)的坐标可以得到另外两个点(点3, 点4),若在哈希表中能找得到这两个(点3, 点4),说明能构成一个正方形,
注意每个点被枚举了四次,最后要除以4;
再者就是找哈希函数,这里用的平方取余法,每输入一个点,就将这个点插入哈希表中;
这个题也受了 poj 3274的启发;
 1 #include<stdio.h>
 2 #include<string.h>
 3 
 4 const int prime = 99991;
 5 struct node
 6 {
 7     int x,y;
 8 }pos[1010];
 9 
10 struct HashTable
11 {
12     int x;
13     int y;
14     struct HashTable* next;
15 }*Hash[prime];//Hash[]是指针数组,存放地址;
16 int n;
17 
18 //插入哈希表
19 void hash_insert(int x, int y)
20 {
21     int key = (x*x + y*y)%prime;//平方求余法;
22     if(!Hash[key])
23     {
24         Hash[key] = new struct HashTable;
25         Hash[key]->x = x;
26         Hash[key]->y = y;
27         Hash[key]->next = NULL;
28     }
29     else
30     {
31         struct HashTable *tmp = Hash[key];
32         while(tmp->next)
33             tmp = tmp->next;//开放寻址,直到next为空
34         //插入新结点
35         tmp->next = new struct HashTable;
36         tmp->next->x = x;
37         tmp->next->y = y;
38         tmp->next->next = NULL;
39     }
40 }
41 bool find(int x, int y)
42 {
43     int key = (x*x+y*y)%prime;
44     if(!Hash[key])
45         return false;//key 对应的地址不存在,
46     else
47     {
48         struct HashTable *tmp = Hash[key];
49         while(tmp)
50         {
51             if(tmp->x == x && tmp->y == y)
52                 return true;
53             tmp = tmp->next;
54         }
55         return false;
56     }
57 }
58 int main()
59 {
60     while(scanf("%d",&n)!= EOF)
61     {
62         int i,j;
63         if(n == 0) break;
64         memset(Hash,0,sizeof(Hash));
65         for(i = 0; i < n; i++)
66         {
67             scanf("%d %d",&pos[i].x,&pos[i].y);
68             hash_insert(pos[i].x, pos[i].y);
69         }
70         int ans = 0;
71         for(i = 0; i < n-1; i++)
72         {
73             for(j = i+1; j < n; j++)
74             {
75                 int x1 = pos[i].x, y1 = pos[i].y;
76                 int x2 = pos[j].x, y2 = pos[j].y;
77                 int add_x = x1-x2,add_y = y1-y2;
78                 int x3 = x1+add_y;
79                 int y3 = y1-add_x;
80                 int x4 = x2+add_y;
81                 int y4 = y2-add_x;
82                 if(find(x3,y3) && find(x4,y4))
83                     ans++;
84 
85                  x3 = x1-add_y;
86                  y3 = y1+add_x;
87                  x4 = x2-add_y;
88                  y4 = y2+add_x;
89                 if(find(x3,y3) && find(x4,y4))
90                     ans++;
91             }
92         }
93         printf("%d\n",ans/4);
94     }
95     return 0;
96 }
View Code

 

posted on 2013-08-16 10:40  straw_berry  阅读(282)  评论(0编辑  收藏  举报