Wormholes 最短路判断有无负权值

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<stdlib.h>
 4 
 5 const int EM = 10000;
 6 const int VM = 600;
 7 const int INF = 999999;
 8 struct node
 9 {
10     int u,v,w;
11 }map[EM];
12 
13 int cnt,dis[VM];
14 int n,m,k;
15 
16 void addedge(int au,int av,int aw)
17 {
18     map[cnt].u = au;
19     map[cnt].v = av;
20     map[cnt].w = aw;
21     cnt++;
22 }
23 
24 int Bellman_ford()
25 {
26     int flag ,i;
27     //初始化
28     for( i = 1; i <= n; i++)
29     {
30         dis[i] = INF;
31     }
32     dis[1] =0;
33     
34     for( i = 1; i <= n; i++)
35     {
36         flag = 0;
37         for(int j = 0; j < cnt; j++)
38         {
39             if(dis[map[j].v] > dis[map[j].u]+map[j].w)
40             {
41                 dis[map[j].v] = dis[map[j].u]+map[j].w;
42                 flag = 1;
43             }
44         }
45         if(flag== 0) break;
46     }
47     if(i == n+1) return 1;//若第n次还可以松弛说明存在负环
48     else return 0;
49 }
50 
51 int main()
52 {
53     int t,u,v,w,ans;
54     scanf("%d",&t);
55     while(t--)
56     {
57         cnt = 0;
58         scanf("%d %d %d",&n,&m,&k);
59         while(m--)
60         {
61             scanf("%d %d %d",&u,&v,&w);
62             //添加双向边
63             addedge(u,v,w);
64             addedge(v,u,w);
65         }
66         while(k--)
67         {
68             scanf("%d %d %d",&u,&v,&w);
69             //添加单向边
70             addedge(u,v,-w);
71         }
72         ans = Bellman_ford();
73         if(ans == 1)
74             printf("YES\n");
75         else printf("NO\n");
76     }
77     return 0;
78 }
View Code
 1 //spfa判断有无负环
 2 #include<stdio.h>
 3 #include<string.h>
 4 #include<stdlib.h>
 5 #include<iostream>
 6 #include<queue>
 7 using namespace std;
 8 
 9 const int MAX = 510;
10 const int INF = 999999;
11 int n,m,w;
12 int map[MAX][MAX];
13 queue<int>que;
14 int inque[MAX];
15 int vexcnt[MAX];
16 int dis[MAX];
17 
18 bool spfa()
19 {
20     memset(inque,0,sizeof(inque));
21     memset(vexcnt,0,sizeof(vexcnt));
22     for(int i = 1; i <= n; i++)
23         dis[i] = INF;
24     dis[1] = 0;
25     que.push(1);
26     inque[1] = 1;
27     vexcnt[1]++;
28     while(!que.empty())
29     {
30         int tmp = que.front();
31         que.pop();
32         inque[tmp] = 0;
33         for(int i = 1; i <= n; i++)
34         {
35             if(dis[tmp] < INF && dis[i] > dis[tmp] + map[tmp][i])
36             {
37                 dis[i] = dis[tmp] + map[tmp][i];
38                 if(inque[i] == 0)
39                 {
40                     inque[i] = 1;
41                     vexcnt[i]++;
42                     que.push(i);
43                     if(vexcnt[i] >= n)
44                     {
45                         return false;
46                     }
47                 }
48             }
49         }
50     }
51     return true;
52 }
53 int main()
54 {
55     int t;
56     int x,y,z;
57     scanf("%d",&t);
58     while(t--)
59     {
60         while(!que.empty())que.pop();
61         scanf("%d %d %d",&n,&m,&w);
62         for(int i = 1; i <= n; i++)
63             for(int j = 1; j <= n; j++)
64             {
65                 if(i == j) map[i][j] = 0;
66                 else map[i][j] = INF;
67             }
68         for(int i = 1; i <= m; i++)
69         {
70             scanf("%d %d %d",&x,&y,&z);
71             if(map[x][y] > z)
72             {
73                 map[x][y] = z;
74                 map[y][x] = z;
75             }
76         }
77         for(int i = 1; i <= w; i++)
78         {
79             scanf("%d %d %d",&x,&y,&z);
80             if(map[x][y] > -z)
81                 map[x][y] = -z;
82         }
83         if(spfa())
84             printf("NO\n");
85         else printf("YES\n");
86     }
87     return 0;
88 }
View Code

 

<Bellman-Ford算法>

Dijkstra算法无法判断负权回路,而负权回路的含义是,回路的权值和为负。若不为负,即便有负权的边,也可正确求出最短路径,如果遇到负权,则可以采用Bellman-Ford算法。
Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。
适用条件&范围
1.单源最短路径(从源点s到其它所有顶点v);
2.有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
3.边权可正可负(如有负权回路输出错误提示);
Bellman-Ford算法描述:
1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
描述性证明:
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。
在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。
每实施一次松弛操作最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)
注意:上述只对正权图有效。如果存在负权不一定第i次就能确定最短路,且与边的顺序有关。
如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。
如果有负权回路,那么第 |v| 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。
 
posted on 2013-07-29 13:10  straw_berry  阅读(266)  评论(0编辑  收藏  举报