最小生成树 最短路

 1 View Code 
 2 
 3 int prime(int cur)
 4 {
 5     int index;
 6     int sum = 0;
 7     memset(visit, false, sizeof(visit));
 8     visit[cur] = true;
 9     for(int i = 0; i < m; i ++){
10         dist[i] = graph[cur][i];    
11     }
12     
13     for(int i = 1; i < m; i ++){
14         
15         int mincost = INF;
16         for(int j = 0; j < m; j ++){
17             if(!visit[j] && dist[j] < mincost){
18                 mincost = dist[j];
19                 index = j;    
20             }    
21         }
22         
23         visit[index] = true;
24         sum += mincost;
25         
26         for(int j = 0; j < m; j ++){
27             if(!visit[j] && dist[j] > graph[index][j]){
28                 dist[j] = graph[index][j];
29             }    
30         }    
31     } 
32     return sum;    
33 }
View Code
  1 View Code
  2 
  3 #include<iostream>
  4 #include<algorithm>
  5 using namespace std;
  6 
  7 const int size = 128; 
  8 int n;
  9 int father[size];
 10 int rank[size];
 11 
 12 //把每条边成为一个结构体,包括起点、终点和权值 
 13 typedef struct node
 14 {
 15     int val;
 16     int start;
 17     int end;    
 18 }edge[SIZE * SIZE / 2];
 19 
 20 //把每个元素初始化为一个集合 
 21 void make_set()
 22 {
 23     for(int i = 0; i < n; i ++){
 24         father[i] = i;
 25         rank[i] = 1;    
 26     }    
 27     return ;
 28 }
 29 
 30 //查找一个元素所在的集合,即找到祖先 
 31 int find_set(int x)
 32 {
 33     if(x != father[x]){
 34         father[x] = find_set(father[x]);    
 35     }    
 36     return father[x];
 37 }
 38 
 39 //合并x,y所在的两个集合:利用Find_Set找到其中两个
 40 //集合的祖先,将一个集合的祖先指向另一个集合的祖先。
 41 void Union(int x, int y)
 42 {
 43     x = find_set(x);    
 44     y = find_set(y);
 45     if(x == y){
 46         return ;    
 47     }
 48     if(rank[x] < rank[y]){
 49         father[x] = find_set(y);    
 50     }
 51     else{
 52         if(rank[x] == rank[y]){
 53             rank[x] ++;    
 54         }    
 55         father[y] = find_set(x);
 56     }
 57     return ;
 58 }
 59 
 60 bool cmp(pnode a, pnode b)
 61 {
 62     return a.val < b.val;    
 63 }
 64 
 65 int kruskal(int n) //n为边的数量 
 66 {
 67     int sum = 0;
 68     make_set();
 69     for(int i = 0; i < n; i ++){   //从权最小的边开始加进图中 
 70         if(find_set(edge[i].start) != find_set(edge[i].end)){
 71             Union(edge[i].start, edge[i].end);
 72             sum += edge[i].val;    
 73         }    
 74     }
 75     return sum;    
 76 }
 77 
 78 int main()
 79 {
 80     while(1){
 81         scanf("%d", &n);    
 82         if(n == 0){
 83             break;    
 84         }
 85         char x, y;
 86         int m, weight;
 87         int cnt = 0;
 88         for(int i = 0; i < n - 1; i ++){
 89             cin >> x >> m; 
 90             //scanf("%c %d", &x, &m);    
 91             //printf("%c %d ", x, m);
 92             for(int j = 0; j < m; j ++){
 93                 cin >> y >> weight; 
 94                 //scanf("%c %d", &y, &weight);
 95                 //printf("%c %d ", y, weight);    
 96                 edge[cnt].start = x - 'A';
 97                 edge[cnt].end = y - 'A';
 98                 edge[cnt].val = weight;
 99                 cnt ++;
100             }
101         }
102         
103         sort(edge, edge + cnt, cmp); //对边按权从小到大排序 
104         cout << kruskal(cnt) << endl; 
105     }    
106 }
View Code
 1 View Code 
 2 
 3 void floyd()
 4 {
 5     for(int k = 0; k < n; k ++){ //作为循环中间点的k必须放在最外一层循环 
 6         for(int i = 0; i < n; i ++){
 7             for(int j = 0; j < n; j ++){
 8                 if(dist[i][j] > dist[i][k] + dist[k][j]){
 9                     dist[i][j] = dist[i][k] + dist[k][j];    //dist[i][j]得出的是i到j的最短路径 
10                 }     
11             }    
12         }    
13     }    
14 }
View Code
 1 View Code 
 2 
 3 void dijkstra(int s)   //s是起点
 4 {
 5     memset(visit, false, sizeof(visit));    
 6 visit[s] = true;
 7     for(int i = 0; i < n; i ++){
 8         dist[i] = graph[s][i];
 9     }
10      
11     int index;
12     for(int i = 1; i < n; i ++){
13         int mincost = INF;
14         for(int j = 0; j < n; j ++){
15             if(!visit[j] && dist[j] < mincost){
16                 mincost = dist[j];
17                 index = j;    
18             }    
19         }
20         visit[index] = true;
21         for(int j = 0; j < n; j ++){
22             if(!visit[j] && dist[j] > dist[index] + graph[index][j]){
23                 dist[j] = dist[index] + graph[index][j];
24             }    
25         }    
26     }
27 }
View Code

 

posted on 2013-06-21 21:39  straw_berry  阅读(128)  评论(0编辑  收藏  举报