高等数学中的重要结论
-
取整函数基本不等式:\(x - 1 < [x] \leq x\)
-
常用基本极限
\(\lim\limits_{x \to 0} \cfrac{\sin x}{x} = 1\)
\(\lim\limits_{x \to 0} (1 + x)^{\frac{1}{x}} = 1\)
\(\lim\limits_{x \to \infty} (1 + \frac{1}{x})^{x} = 1\)
对于\(1^\infty\)推广有,\(\lim\alpha(x) = 0, \lim\beta = \infty\), 且\(\lim\alpha(x)\beta(x) = A\),则有\(\lim[1 + \alpha]^{\beta(x)} = e^A\)
\(\lim\limits_{x \to 0} \cfrac{a^x - 1}{x} = \ln a\)(洛必达法则易证)
\(\lim\limits_{n \to \infty} \sqrt[n] n = 1\)
\(\lim\limits_{n \to \infty} \sqrt[n] a = 1 \, (a > 0)\)
\( \lim\limits_{x \to \infty}\cfrac{a_nx^n + a_{n - 1}x^{n - 1} + ... + a_1x + a_0}{b_mx^m + b_{m - 1}x^{m - 1} + ... + b_1x + b_0} = \left\{\begin{array}{rcl} \frac{a_n}{b_m}, & n = m \\ 0, & n < m \\ \infty, & n > m\end{array}\right. \)
\( \lim\limits_{n \to \infty} x^n = \left\{\begin{array}{rcl} 0, & |x| < 1 \\ \infty, & |x| > 1 \\ 1, & x = 1 \\ 不存在, & x = -1 \end{array}\right. \)
\( \lim\limits_{n \to \infty} x^n = \left\{\begin{array}{rcl} 0, & |x| < 1 \\ \infty, & |x| > 1 \\ 1, & x = 1 \\ 不存在, & x = -1 \end{array}\right. \)
\( \lim\limits_{n \to \infty} e^{n \pi} = \left\{\begin{array}{rcl} 0, & x < 0 \\ +\infty, & x > 0 \\ 1, & x = 0\end{array}\right. \) -
常用等价无穷小
\(x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1 + x) \sim e^x - 1\)
\((1 + x) ^ \alpha - 1 \sim \alpha x\),推广当\(\alpha(x) \to 0, \alpha(x)\beta(x) \to 0\)时,\((1 + \alpha (x))^{\beta(x)} - 1 \sim \alpha(x)\beta(x)\)
\(1 - \cos x \sim \frac{1}{2}x^2\),推广\(1 - \cos^a x \sim \frac{a}{2} x^2\)
\(\alpha^x - 1 \sim x\ln a\)
\(x - \sin x \sim \frac{1}{6}x^3\)
\(\arcsin x - x \sim \frac{1}{6} x^3\)
\(\tan x - x \sim \frac{1}{3}x^3\)
\(x - \arctan x \sim \frac{1}{3}x^3\)
\(x - \ln (1 + x) \sim \frac{1}{2}x^2\),推广\(\ln (1 - x) + x \sim -\frac{1}{2}x^2\),令\(t = -x\)带入即可。 -
\(\lim\frac{f(x)}{g(x)}\)存在,\(\lim g(x) = 0 \to \lim f(x) = 0\);\(\lim\frac{f(x)}{g(x)} = A \neq 0\),\(\lim f(x) = 0 \to \lim g(x) = 0\)。
-
如果\(f(x) \, n\)阶可导,使用洛必达最多到\(f^{n-1}(x)\);如果\(f(x) \, n\)阶可导且连续,使用洛必达最多到\(f^{n}(x)\)。
-
\(\lim\limits_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + ... + a_m^n}\),其中\(a_i > 0 \, (i = 1, 2, ..., m),\max\{a_i\} = a\),那么\(原式 = a\)
-
常用不等式:\(a^2 + b^2 \geq 2ab\);\(\frac{a + b + c}{3} \geq \sqrt[3]{abc}\);\(\sin x < x < \tan x, x \in (0, \frac{\pi}{2})\);\(\frac{x}{1 + x} < \ln (1 + x) < x, x \in (0, +\infty)\)。
-
\(\lim\limits_{x \to 0} x^{\alpha} \ln x = 0 \,\, (\alpha > 0)\)。
证明:\(\lim\limits_{x \to 0} \frac{-\ln{\frac{1}{x}}}{\frac{1}{x^{\alpha}}} = 0\),因为分子是对数函数,分母是幂函数。 -
连续函数的和、差、积、商都连续,连续函数复合也连续。
-
\(f(x)\)是奇函数,那么\(f'(x)\)是偶函数;\(f(x)\)是偶函数,那么\(f'(x)\)是积函数;\(f(x)\)是周期函数,那么\(f'(x)\)也是周期函数,且周期不变。
-
常用泰勒公式
\(e^x = 1 + x + \frac{x^2}{2!} + ... + \cfrac{x^n}{n!} + o(x^n)\)
\(\sin x = x - \frac{x^3}{3!} + ... + (-1)^{n - 1}\cfrac{x^{2n - 1}}{({2n - 1})!} + o(x^{2n - 1})\)
\(\cos x = 1 - \frac{x^2}{2!} + ... + (-1)^{n}\cfrac{x^{2n}}{(2n)!} + o(x^{2n})\)
\(\ln(1 + x) = x - \cfrac{x^2}{2} + ... + (-1)^{n - 1}\cfrac{x^n}{n} + o(x^n)\)
\((1 + x)^a = 1 + ax + \cfrac{a(a - 1)}{2!}x^2 + ... + \cfrac{a(a - 1)...(a - n + 1)}{n!}x^n + o(x^n)\)
\(\cfrac{1}{x + 1} = 1 - x + x^2 + ... + (-1)^nx^n + o(x^n)\)
\(\cfrac{1}{x + 1} = 1 + x + x^2 + ... + x^n + o(x^n)\) -
\(f(x)\),\(g(x)\)在\((c, +\infty)\)可导,且\(g'(x) \neq 0\);\(\lim\limits_{x \to +\infty}g(x) = \infty\);\(\lim\limits_{x \to +\infty}\cfrac{f'(x)}{g'(x)} = A(A为有限或者\infty\),那么有\(\lim\limits_{x \to +\infty} \cfrac{f(x)}{g(x)} = \lim\limits_{x \to +\infty}\cfrac{f'(x)}{g'(x)} = A\).也就是说这种情形下,不必验证\(f(x)\)是否是无穷大量,可以直接洛必达。
-
如果\(f(t)\)可积,那么\(F(x) = \int_a^xf(t)dt\)一定连续。
证明:\(F(x) = \int_a^xf(t)dt\),令\(\delta \to 0\),有\(F(x + \delta) = \int_a^{x + \delta}f(t)dt = \int_a^xf(t)dt + \int_x^{x + \delta}f(t)dt\) ,如果\(F(x)\)连续,那么会有\(\lim\limits_{\delta \to 0}F(x + \delta) = F(x)\),那么只需要证明\(\lim\limits_{\delta \to 0}\int_x^{x + \delta}f(t)dt = 0\),对于\(\lim\limits_{\delta \to 0}\int_x^{x + \delta}f(t)dt = 0\),因为可积必有界,那么设\(f(x)\)在\((x, x + \delta)\)上的最大值为\(M\),最小值为\(m\),则有\(m(x + \delta - x) \leq \int_a^b f(x)dx \leq M(x + \delta - x)\),由于\((x + \delta - x )= \delta \to 0\),那么有\(0 \leq \int_a^b f(x)dx \leq 0\),所以\(\lim\limits_{\delta \to 0}\int_x^{x + \delta}f(t)dt = 0\),证毕。 -
讨论\(F(x) = \int_a^xf(t)dt\)在\(x = x_0\)的可导性\((x \to x_0, x \neq x_0)\)。
从导数定义出发,\(F'(x) = \lim\limits_{x \to x_0}\cfrac{F(x) - F(x_0)}{x - x_0} = \lim\limits_{x \to x_0}F'(x) = \lim\limits_{x\to x_0}f(x)\)
从上式看出,\(F(x)\)的可导性与\(\lim\limits_{x\to x_0}f(x)\)有关。
当\(f(x)\)在\(x_0\)点连续,那么有\(\lim\limits_{x\to x_0}f(x) = f(x_0)\),所以\(F(x)\)可导;
当\(f(x)\)在\(x = x_0\)点为可去间断点,那么\(\lim\limits_{x \to {x_0}^+}f(x) = \lim\limits_{x \to {x_0}^+}f(x) = A \to \lim\limits_{x\to x_0}f(x) = A\),所有\(F(x)\)可导;
当\(f(x)\)在\(x = x_0\)点为跳跃间断点、第二类间断点均不可导。
-
\(f(x)\)在区间\(I\)上有第一类间断点与无穷间断点,则\(f(x)\)在区间\(I\)上没有原函数。
证明:使用反证法,假设存在原函数\(F(x)\),那么根据导数定义与洛必达法则有\(F'(x) = \lim\limits_{x \to {x_0}^+}\cfrac{F(x) - F(x_0)}{x - x_0} = \lim\limits_{x \to {x_0}^+}F'(x)(洛必达) = \lim\limits_{x \to {x_0}^+}f(x)\),\(F'(x) = \lim\limits_{x \to {x_0}^-}\cfrac{F(x) - F(x_0)}{x - x_0} = \lim\limits_{x \to {x_0}^-}F'(x)(洛必达) = \lim\limits_{x \to {x_0}^-}f(x)\),
如果\(f(x) = F'(x)\),那么有\(f(x_0) = \lim\limits_{x \to {x_0}^+}f(x) = \lim\limits_{x \to {x_0}^-}f(x)\),而不满足三类间断点的要求,所以与假设矛盾,那么不存在原函数,由这个条件还可以知道连续函数一定存在原函数。
注:这里可以使用洛必达法则的原因是因为符合使用洛必达的使用条件(\(\lim\limits_{x \to {x_0}^+}f(x)\)与\(\lim\limits_{x \to {x_0}^-}f(x)\)存在或者无穷)。那么对于振荡间断点来说就不符合这个条件,所以不能这样证明,举个例子来说它是有原函数的,\(f(x) = \left\{\begin{array}{rcl} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x\neq 0 \\ 0, & x = 0 \end{array}\right.\),原函数是\(F(x) = \left\{\begin{array}{rcl} x^2sin\frac{1}{x}, & x\neq 0 \\ 0, & x = 0 \end{array}\right.\)。
-
区间再现公式\(\int_a^bf(x)dx = \int_a^bf(a + b - x)dx\)。
证明:令\(x = a + b - t\),那么\(\int_a^bf(x)dx = \int_b^af(a + b - t)d(-t) = \int_a^b f(a + b - t)dt = \int_a^bf(a + b - x)\)
由此可以推导出:\(\int_0^{\frac{\pi}{2}}f(\sin x)dx = \int_0^{\frac{\pi}{2}}f(\cos x)dx\)
-
常用三角积分公式:
\(\int_0^{\frac{\pi}{2}}f(\sin x)dx = \int_0^{\frac{\pi}{2}}f(\cos x)dx\)
\(\int_0^{\pi}f(\sin x)dx = 2\int_0^{\frac{\pi}{2}}f(\sin x)dx\)
\(\int_0^{\pi}xf(\sin x)dx = \frac{\pi}{2}\int_0^{\pi}f(\sin x)dx\),左边令\(u = \pi - x\)推导即可。
点火公式:\(\int_0^{\frac{\pi}{2}}\sin^nxdx = \int_0^{\frac{\pi}{2}}\cos^nxdx = \left\{\begin{array}{rcl} &\cfrac{n - 1}{n} \times \cfrac{n - 3}{n - 2} \times ... \times \cfrac{1}{2} \times \cfrac{\pi}{2}, & n为偶数\\ &\cfrac{n - 1}{n} \times \cfrac{n - 3}{n - 2} \times ... \times \cfrac{2}{3}, & n为奇数 \end{array}\right.\)
\(\int_0^{\frac{\pi}{2}}f(\sin x) dx = \int_{\frac{\pi}{2}}^{\pi}f(\sin x)dx\)
\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(\sin x) dx = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}f(\sin x)dx = \int_{\frac{3\pi}{2}}^{\frac{5\pi}{2}}f(\sin x)dx\)
-
如果\(f(x)\)为偶函数,那么\(F(x) = \int_a^xf(t)dt\)不一定为奇函数;但是如果\(f(x)\)为奇函数,那么\(F(x) = \int_a^xf(t)dt\)为偶函数。
(1)如果\(f(x)\)为奇函数,那么有\(f(-x) = f(x)\),
\(F(-x) = \int_a^{-x}f(t)dt\),令\(t = -u\),那么\(F(-x) = \int_{-a}^u f(-u) d(-u) = \int_{-a}^af(u)du + \int_{a}^uf(u)du\),因为\(f(x)\)为奇函数,那么有\(\int_{-a}^af(u)du = 0\),所以\(F(-x) = \int_{a}^xf(x)dx = F(x)\),所以\(f(x)\)为奇函数,那么\(F(x)\)必定为偶函数。
(2)如果\(f(x)\)为偶函数,那么有\(f(-x) = f(x)\),
\(F(-x) = \int_a^{-x}f(t)dt\),令\(t = -u\),那么\(F(-x) = \int_{-a}^u f(-u) d(-u) = -\int_{-a}^u f(u) d(u) = -\int_{-a}^af(u)du - \int_{a}^uf(u)du\),如果\(\int_{-a}^af(u)du\)为\(0\),那么有\(F(-x) = - \int_{a}^uf(u)du = - \int_{a}^xf(x)dx\),此时\(F(x)\)为奇函数;否则\(F(x)\)不为奇函数。
如果\(a = 0\),那么有\(f(x)\)为偶函数,\(F(x)\)为奇函数;\(f(x)\)为奇函数,那么\(F(x)\)为偶函数。
-
\(f(x)\)在\([a, b]\)连续,那么\(f(x)\)在\([a, b]\)有界;\(f(x)\)在\((a, b)\)连续,\(\lim\limits_{x \to {a^+}}f(x)\)与\(\lim\limits_{x \to {b^-}}f(x)\)存在,那么\(f(x)\)在\([a, b]\)有界。
-
\(\sum\limits_{n = 1}^\infty|b_n|\)收敛,那么\(\sum\limits_{n= 1}^\infty(b_n)^2\)收敛。
证明:\(\sum\limits_{n = 1}^\infty|b_n|\)收敛,则有\(\lim\limits_{n\to \infty}|b_n| \to 0\),所以\(n\)充分大的时候有\(|b_n|\),\(b_n^2 \leq |b_n|\),所以\(\sum\limits_{n= 1}^\infty(b_n)^2\)也收敛。
\(\sum\limits_{n = 1}^\infty b_n\)收敛,\(\sum\limits_{n= 1}^\infty(b_n)^2\)不一定收敛,反例\(b(n) = \cfrac{(-1)^n}{\sqrt n}\),\(b_n^2 = \cfrac{1}{n}\)是调和级数。
-
若\(\lim\limits_{n \to \infty} a_n = 0\),\(\sum\limits_{n = 1}^\infty b_n\)收敛,且为正项级数,那么有\(\sum\limits_{n = 1}^\infty a_n b_n\)也收敛。
-
\(\sum\limits_{n = 1}^\infty \cfrac{x^n}{n} = -\ln(1 - x).\)
证明:\(\ln(1 + x) = x -\cfrac{x^2}{2} + ... + (-1)^{n - 1}\cfrac{x^{n}}{n} = \sum\limits_{n = 1}^{\infty}\cfrac{(-1)^{n - 1}x^n}{n}\)
\(\ln(1 - x) = -x -\cfrac{x^2}{2} - \cfrac{x^3}{3}... -\cfrac{x^{n}}{n} = -\sum\limits_{n = 1}^\infty \cfrac{x^n}{n}\)
\(-\ln(1 - x) = x +\cfrac{x^2}{2} + \cfrac{x^3}{3}... +\cfrac{x^{n}}{n} = \sum\limits_{n = 1}^\infty \cfrac{x^n}{n}\)