高等数学中的经典反例
高等数学中的经典反例
-
\(\lim\limits_{n \to \infty} x_n = \alpha \Longleftrightarrow \lim\limits_{k \to \infty} x_{2k - 1} = \lim\limits_{k \to \infty} x_{2k} = \alpha\)
例:\(x = (-1) ^ n\),\(\lim\limits_{k \to \infty} x_{2k - 1} = -1\), \(\lim\limits_{k \to \infty} x_{2k} = 1\),\(\lim\limits_{k \to \infty} x_{2k - 1} \neq \lim\limits_{k \to \infty} x_{2k}\),所以\(\lim\limits_{n \to \infty} x_n\)不存在。 -
若\(\lim\limits_{n \to \infty} x_n = \alpha\),则\(\lim\limits_{n \to \infty} |x_n| = |a|\),反之不成立。
例:\(x_n = (-1) ^ n\),\(\lim\limits_{n \to \infty} |x_n| = 1 = |1|\),但是\(\lim\limits_{n \to \infty} x_n = \lim\limits_{n \to \infty} (-1)^n\)不存在。 -
\(\lim\limits_{x \to \infty}f(x) = A \to \lim\limits_{n \to \infty}f(n) = A\),反过来不成立。
例:\(f(x) = \sin \pi x\)与\(f(n) = \sin n\pi\),\(\lim\limits_{x \to \infty} f(x)\)不存在,\(\lim\limits_{n \to \infty} f(n) = 0\),存在。 -
\(\lim\limits_{x \to x_0} f(x)\)存在,与\(x = x_0\)处有没有定义无关,但是\(f(x)\)必须在\(x = x_0\)的某去心邻域\(\mathring{U}(x_0, \delta)\)处处有定义。
例: \(\lim\limits_{x \to 0} \cfrac{\sin x}{x} = 1\),且\(\lim\limits_{x \to 0}x \sin{\cfrac{1}{x}} = 0\),但是\(\lim\limits_{x \to 0} \cfrac{\sin(x \sin{\cfrac{1}{x}})}{x \sin{\cfrac{1}{x}}} \neq 1\),因为在\(0\)的去心邻域内,如果\(x = \cfrac{1}{n \pi}\),那么\(\sin{\cfrac{1}{x}}\)没有定义,因此不可以直接使用等价无穷小的代换。 -
保号性:
极限值保数列项:如果\(A > 0\) (或 \(A < 0\)),则存在\(N > 0\),当\(n > N\)时,\(x_n > 0\)(或\(x_n < 0\)),但是可以加等号吗,即当\(A \geq 0\),\(n > N\)时,\(x_n \geq 0\)(或\(x_n \leq 0\))?
例:\(x(n) = \cfrac{(-1)^n}{n}\),\(\lim\limits_{n \to 0} = 0\),而\(x_n != 0\),所以不能等号。
数列项保极限值:如果存在\(N > 0\), 当\(n > N\)时,\(x_n \geq 0\)(或\((x_n \leq 0)\)),则\(A \geq 0\)(或\(A \leq 0\)),但是不加等号吗,即当\(x_n > 0\)(或\((x_n < 0)\)),则\(A > 0\)(或\(A < 0\)) ?
例:\(x_n = \cfrac{1}{n}\),\(x_n > 0\), 但是\(\lim\limits_{x \to \infty} x_n = 0\)。 -
有限个无穷小的和仍然是无穷小。
例:“有限”两个字一定不能缺少,\(\lim\limits_{n \to \infty} [\cfrac{1}{n^2} + \cfrac{2}{n^2} + ... + \cfrac{n}{n^2}] = \lim\limits_{n \to \infty}\cfrac{\cfrac{1}{2} n (n + 1) }{n^2} = \cfrac{1}{2} \neq 0\),极限不再是无穷小。 -
无穷大量一定是无界变量,无界变量不一定是无穷大量。
例:
\(\,\,\,\,\,\,\,\,\,\)奇数项无界,但是不满足无穷大的条件。
-
\(f(x)\)在某邻域\(\mathring{U}(x_0, \delta)\)可导,但是\(\lim\limits_{x \to x_0} f'(x)\)不存在。
例:\(f(x) = \left\{\begin{array}{rcl} x^2 \sin{\cfrac{1}{x}} & x \neq 0 \\ 0 & x = 0\end{array}\right.\)
\(x \neq 0\),\(f'(x) = 2x\sin{\cfrac{1}{x}} - \cos{\cfrac{1}{x}}\);
\(x = 0\),\(f'(x) = \lim\limits_{x \to 0}\cfrac{x^2\sin{\cfrac{1}{x}} - 0}{x} = 0\),所以\(f(x)\)处处可导,但是\(\lim\limits_{x \to 0}f'(x)\)不存在。 -
极值点不一定是驻点,例如\(f(x) = |x|\),\(x = 0\)是极值点,但在这点不可导;驻点不一定是极值点,例如\(f(x) = x^3\),\(f'(0) = 0\),所有\(x = 0\)是驻点,但却不是极值点。
-
可积必有界,但是有界不一定可积,例如迪利克雷函数\(D(x) = \left\{\begin{array}{rcl} 1 & x为有理数\\ 0 & x为无理数\end{array}\right.\) \(\,\,\,\),它有界但不可积,因为它不连续。
-
关于多元函数连续、可偏导、可微分之间关系的反例。
(1)\(f(x, y) = |x| + |y|\)在\((0, 0)\)点连续,但不可导(也不可微)。
证明连续:\(\lim\limits_{(x, y)\to(0, 0)}(|x| + |y|) = f(0, 0) = 0\)
证明不可导(也不可微):\(f(x, y_0) = f(x, 0) = |x|\),所以\(f_x'(0,0)\)不存在,与此同理\(f_y'(0,0)\)也不存在,因此\(f(x, y)\)不可导,由 于判断可微的第一条件就是判断\(f_x'(x_0,y_0)\)与\(f_y'(x_0,y_0)\)是否存在,因此不可微。
(2)\(f(x, y) = \left\{\begin{array}{rcl} &\cfrac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ &0 ,& (x, y) = 0 \end{array}\right.\)在\((0, 0)\)点可导,但不连续。
证明可导:\(f_x'(0, 0) = \lim\limits_{\Delta x \to 0} \cfrac{f(0 + \Delta x, 0) - f(0, 0)}{\Delta x} = \lim\limits_{\Delta x \to 0} \cfrac{0 - 0}{\Delta x} = 0\),同理\(f_y'(0, 0) = 0\)。因此\(f(x, y)\)在\((0, 0)\)点可导。
证明不连续:对于\(\lim\limits_{(x, y)\to(0, 0)} \cfrac{xy}{x^2 + y^2}\),我们令\(y = kx\),即让\((x_0, y_0)\)从直线\(y = kx\)上无限趋近与\((0, 0)\),于是得:
由于\(k\)是变化的,因此不满足从任意方向趋近于\((0, 0)\)极限都相等的条件,所以这个极限不存在,所以不连续。
(3)\(f(x, y) = \left\{\begin{array}{rcl} &\cfrac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ &0 ,& (x, y) = 0 \end{array}\right.\)在\((0, 0)\)点可导,但不可微。
证明可导:\(f_x'(0, 0) = \lim\limits_{\Delta x \to 0} \cfrac{f(0 + \Delta x, 0) - f(0, 0)}{\Delta x} = \lim\limits_{\Delta x \to 0} \cfrac{0 - 0}{\Delta x} = 0\),同理\(f_y'(0, 0) = 0\),因此\(f(x, y)\)在\((0, 0)\)点可导。
证明不可微:首先满足\(f_x'(0, 0)\)与\(f_y'(0, 0)\)都存在的条件;其次看是否满足以下式子:
其中\(\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)\)、\(\rho = \sqrt {(\Delta x) ^2 + (\Delta y)^2}\)。
将\(f(x, y)\)带入式子得:
而这个式子\(\lim\limits_{\Delta x \to 0 \atop \Delta y \to 0} \cfrac{\Delta x \Delta y}{(\Delta x) ^2 + (\Delta y)^2}\)在(2)中证明,极限不存在,因此\(f(x, y)\)在\((0, 0)\)点不可微。
(4)\(f(x, y) = \left\{\begin{array}{rcl} & (x^2 + y^2) \sin\cfrac{1}{x^2 + y^2}, & (x, y) \neq (0, 0)\\ & 0, & (x, y) = 0\end{array}\right.\) 在\((0, 0)\)点可微,但偏导数不连续。
证明可微:首先判断\(f_x'(0, 0)\)与\(f_y'(0, 0)\)是否都存在,\(f_x'(0, 0) = \lim\limits_{\Delta x \to 0} \cfrac{f(0 + \Delta x, 0) - f(0, 0)}{\Delta x} = (\Delta x)^2 \sin\cfrac{1}{(\Delta x)^2} = 0\),同理 \(f_y'(0, 0) = 0\),因此第一条件满足;其次判断\(\lim\limits_{\Delta x \to 0 \atop \Delta y \to 0} \cfrac{\Delta z - [f_x'(x_0, y_0)\Delta x + f_y'(x_0, y_0)\Delta y]}{\rho}\)是否为0,步骤如下:
因此\(f(x, y)\)在\((0, 0)\)点可微。
证明偏导不连续:即证明\(\lim\limits_{x \to 0 \atop y \to 0}f_x'(x, y) = f_x'(0, 0)\)与\(\lim\limits_{x \to 0 \atop y \to 0}f_y'(x, y) = f_y'(0, 0)\),其中\(f_x'(0, 0) = f_y'(0, 0) = 0\)
\(\lim\limits_{x \to 0 \atop y \to 0}f_x'(x, y) = \lim\limits_{x \to 0 \atop y \to 0} (2x \sin\cfrac{1}{x^2 + y^2} - \cfrac{2x}{x^2 + y^2}\cos\cfrac{1}{x^2 + y^2})\),其中\(\lim\limits_{x \to 0 \atop y \to 0} (2x \sin\cfrac{1}{x^2 + y^2}) = 0\),而
\(\lim\limits_{x \to 0 \atop y \to 0}(\cfrac{2x}{x^2 + y^2}\cos\cfrac{1}{x^2 + y^2}) = \lim\limits_{y = 0 \atop x \to 0}(\cfrac{2x}{x^2 + y^2}\cos\cfrac{1}{x^2 + y^2}) = \lim\limits_{x\to 0}(\cfrac{2}{x} \cos\cfrac{1}{x^2})\)不存在,因此得\(\lim\limits_{x \to 0 \atop y \to 0}f_x'(x, y) = f_x'(0, 0)\)不存在,那么 \(f(x, y)\)在\((0, 0)\)点偏导不连续。