How many ways-hdu1978-记忆化搜索

这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下: 
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。 
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。 
3.机器人不能在原地停留。 
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。

如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4) 

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。 
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

Input第一行输入一个整数T,表示数据的组数。 
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。Output对于每一组数据输出方式总数对10000取模的结果.Sample Input

1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2

Sample Output

3948

注意理解题意:如(1,1)位置上的机器人,下一步能到达的位置为蓝色标记部分,也就是说,位于(x,y)位置上的机器人,能移动的步数<=a[x][y],但不能停留在原地。
思路:递归+记忆化搜索,dp[x][y]表示(x,y)到达终点(n,m)的路径数。
刚开始时,dp[n][m]=1,dp[1][1]是未知的,但是通过dp[1][1]+=dp[1+x][1+y],而
dp[1+x][1+y]+=dp[1+xx][1+yy],(x,y,xx,yy分别表示当前位置能够到达的横纵坐标)......直到递归到dp[n][m],而dp[n][m]=1,再由dp[n][m]回溯到其上一个位置

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int mod=10000;
int n,m,a[110][110];
int dp[110][110];//dp[x][y]表示从(x,y)到达终点(n,m)的总路径数
int solve(int x,int y)
{
    if(dp[x][y]){//改位置已经查找过,则直接返回
        return dp[x][y];
    }
    if(x==n&&y==m)//如果上一个节点能够刚好到达(n,m),认为是一条路径
        return 1;
    int ans=0,sum=a[x][y];//ans表示从当前位置出发到达终点的路径数,sum表示当前位置(x,y)下一步可走的范围
    //由题意知,(x,y)节点只能够向下或向右移动,且移动的步数不能超过a[x][y]的大小
    for(int i=0;i<=sum;i++){//横向走的格子数,不能超过sum=a[x][y]
        for(int j=0;j<=sum;j++){//纵向走的格子数,不能超过sum=a[x][y]
            if(i+j<=sum&&i+j!=0){//机器人不能在原地停留(i+j!=0)且步数不能超过sum=a[x][y]
                int xx=x+i,yy=y+j;//满足上述条件则得到下一个位置的坐标
                if(xx<=n&&yy<=m){
                    ans+=solve(xx,yy);//总路径数加上从下一个位置出发到达终点的路径数
                    ans%=mod;
                }
            }
        }
    }
    return dp[x][y]=ans;//遍历完后,当前节点(x,y)到终点的总路径数即可得出
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                scanf("%d",&a[i][j]);
            }
        }
        memset(dp,0,sizeof(dp));
        printf("%d\n",solve(1,1));//输出从(1,1)到达终点(n,m)的总方法数
    }
    return 0;
}

 

posted @ 2019-07-19 15:57  里昂静  阅读(185)  评论(0编辑  收藏  举报