2018-hdu6286-容斥定理
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6286
Problem Description
Given a,b,c,d,find out the number of pairs of integers (x,y) where a≤x≤b,c≤y≤d and x⋅yis a multiple of 2018.
Input
The input consists of several test cases and is terminated by end-of-file.
Each test case contains four integers a,b,c,d.
Output
For each test case, print an integer which denotes the result.
## Constraint
* 1≤a≤b≤10^9,1≤c≤d≤10^9
* The number of tests cases does not exceed 10^4.
Sample Input
1 2 1 2018 1 2018 1 2018 1 1000000000 1 1000000000
Sample Output
3 6051 1485883320325200
转载自:https://blog.csdn.net/zzti_xiaowei/article/details/80379427
2018的因子有:1,2,1009,2018,分类讨论即可:
1. [a,b]中2018的倍数,[c,d]为任意数
2. [c,d]中2018的倍数,[a,b]为任意数
3. [a,b]中2018的倍数且[c,d]中2018的倍数(为了1,2情况去重)
4. [a,b]中1009的奇数倍的个数(偶数倍同1有重叠),[d,c]中2的倍数且不是2018的倍数
5. [c,d]中1009的奇数倍的个数(偶数倍同2有重叠),[a,b]中2的倍数且不是2018的倍数
#include<cstdio> #include<iostream> using namespace std; typedef long long ll; const int maxn=1e6+10; ll a,b,c,d; ll f(ll x)//求出1-x中有多少个数是1009的奇数倍 { x/=1009; if(x%2) return x/2+1; return x/2; } int main() { while(~scanf("%lld%lld%lld%lld",&a,&b,&c,&d)){ ll sum=0; sum+=((b/2018)-(a-1)/2018)*(d-c+1); sum+=((d/2018)-(c-1)/2018)*(b-a+1); sum-=(b/2018-(a-1)/2018)*(d/2018-(c-1)/2018); sum+=(f(b)-f(a-1))*(d/2-(c-1)/2-(d/2018-(c-1)/2018)); sum+=(f(d)-f(c-1))*(b/2-(a-1)/2-(b/2018-(a-1)/2018)); printf("%lld\n",sum); } return 0; }