P4180 严格次小生成树[BJWC2010]

题目链接

当时在暑假早就讲了这道题了,只不过我现在才做了这道题。

题解:

我们要求次小生成树的话,考虑先把最小生成树求出来,因为如果我们用求最小生成树的话,边早已经从大到小排序好了,所以次小生成树的就是替换最小生成树上的一条边所得。

那么考虑如何来替换那一条边,要保证严格次小,那么我们需要替换掉最小生成树上两点间最大的边权,这样暴力枚举删边肯定是不行的,所以我们需要维护在最小生成树上的边。考虑用树链剖分来维护(其实就是打不来倍增

然而维护的时候我们不仅要维护边权的最大值,还不能忘了再维护一个边权的次大值,因为最大值的边权有可能与我们枚举的非树边相等,不满足严格次小,所以还要维护次大值。

那么这道题的解法就很容易了,枚举非树边,然后用非树边替换求出次小生成树即可。时间复杂度nlogn+kruskal复杂度。

代码如下:

 

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+7;
const long long inf=1e15;
struct node{
    int x,y,val,flag;
}tree[maxn*4];
bool cmp(node a,node b){
    return a.val<b.val;
}
struct dd{
    int nxt,to,val;
}edge[maxn*3];
struct sb{
    int l,r;
    long long mx1,mx2;//维护最大值与次大值 
}seg[maxn*4];
int n,m,x,y,v;
int fa[maxn]; 
int get(int x){
    if(x==fa[x]) return x;
    else return fa[x]=get(fa[x]);
}
int head[maxn],cnt;
void add(int x,int y,int v){
    edge[++cnt].nxt=head[x];
    edge[cnt].to=y;
    edge[cnt].val=v;
    head[x]=cnt;
}
long long ans;
void kruskal(){
    ans=0;
    int tot=0;
    sort(tree+1,tree+1+m,cmp);
    for(int i=1;i<=m;i++){
        int f1=get(tree[i].x);
        int f2=get(tree[i].y);
        if(f1!=f2){
            fa[f1]=f2;
            ans+=tree[i].val;
            tree[i].flag=1;
            tot++;
            if(tot==n-1) break;
        }
    }
    for(int i=1;i<=m;i++){
        if(tree[i].flag){
            add(tree[i].x,tree[i].y,tree[i].val);
            add(tree[i].y,tree[i].x,tree[i].val);
        }
    }
}
int w[maxn],dep[maxn],siz[maxn],faa[maxn],son[maxn];
void dfs1(int x,int f){
    dep[x]=dep[f]+1;
    faa[x]=f;
    siz[x]=1;
    int maxson=-1;
    for(int i=head[x];i;i=edge[i].nxt){
        int go=edge[i].to;
        if(go==faa[x]) continue;
        w[go]=edge[i].val;
        dfs1(go,x);
        siz[x]+=siz[go];
        if(siz[go]>maxson){
            maxson=siz[go];
            son[x]=go;
        }
    }
}
int top[maxn],id[maxn],va[maxn],in;
void dfs2(int x,int topf){
    top[x]=topf;
    id[x]=++in;
    va[id[x]]=w[x];
    if(!son[x]) return;
    dfs2(son[x],topf);
    for(int i=head[x];i;i=edge[i].nxt){
        int go=edge[i].to;
        if(go==faa[x]||go==son[x]) continue;
        dfs2(go,go);
    }
}
void pushup(int now){
    if(seg[now<<1].mx1>seg[now<<1|1].mx1){
        seg[now].mx1=seg[now<<1].mx1;
        seg[now].mx2=max(seg[now<<1].mx2,seg[now<<1|1].mx1);
    }
    if(seg[now<<1].mx1<seg[now<<1|1].mx1){
        seg[now].mx1=seg[now<<1|1].mx1;
        seg[now].mx2=max(seg[now<<1].mx1,seg[now<<1|1].mx2);
    }
    if(seg[now<<1].mx1==seg[now<<1|1].mx1){
        seg[now].mx1=seg[now<<1].mx1;
        seg[now].mx2=max(seg[now<<1].mx2,seg[now<<1|1].mx2);
    }
}
void build(int now,int l,int r){
    seg[now].l=l,seg[now].r=r;
    if(l==r){
        seg[now].mx1=va[l];
        return;
    }
    int mid=(l+r)>>1;
    build(now<<1,l,mid);
    build(now<<1|1,mid+1,r);
    pushup(now);
}
pair<int,int> getmax(pair<int,int> x,pair<int,int> y){
    int ans1,ans2;
    if(x.first>y.first){
        ans1=x.first;
        ans2=max(x.second,y.first);
    }
    if(x.first<y.first){
        ans1=y.first;
        ans2=max(x.first,y.second);
    }
    if(x.first==y.first){
        ans1=x.first;
        ans2=max(x.second,y.second);
    }
    return make_pair(ans1,ans2);
}
pair<int,int> query(int now,int l,int r){
    if(seg[now].l>=l&&seg[now].r<=r) return make_pair(seg[now].mx1,seg[now].mx2);
    int mid=(seg[now].l+seg[now].r)>>1;
    pair<int,int> ans;
    if(l<=mid) ans=getmax(ans,query(now<<1,l,r));
    if(r>mid) ans=getmax(ans,query(now<<1|1,l,r));
    return ans;
}
pair<int,int> link(int x,int y){
    pair<int,int> res;
    while(top[x]!=top[y]){
        if(dep[top[x]]<dep[top[y]]) swap(x,y);
        res=getmax(res,query(1,id[top[x]],id[x]));
        x=faa[top[x]];
    }
    if(dep[x]<dep[y]) swap(x,y);
    res=getmax(res,query(1,id[y]+1,id[x]));
    return res;
}
void solve(){
    pair<int,int> ass;
    long long save;
    long long final=inf;
    for(int i=1;i<=m;i++){
        if(!tree[i].flag){
            ass=link(tree[i].x,tree[i].y);
            if(tree[i].val>ass.first){ 
                save=ans;
                final=min(final,save-ass.first+tree[i].val);
            }
            else if(tree[i].val>ass.second){
                save=ans;
                final=min(final,save-ass.second+tree[i].val);
            }
        }
    }
    printf("%lld\n",final);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) fa[i]=i;
    for(int i=1;i<=m;i++) scanf("%d%d%d",&tree[i].x,&tree[i].y,&tree[i].val);
    kruskal();
    dfs1(1,0);dfs2(1,1);build(1,1,n);
    solve();
    return 0;
}
View Code

 

posted @ 2019-10-06 18:41  JBLee  阅读(140)  评论(0编辑  收藏  举报