洛谷P3957 跳房子(Noip2017普及组 T4)

今天我们的考试就考到了这道题,在考场上就压根没有思路,我知道它是一道dp的题,但因为太弱还是写不出来。

下来评讲的时候知道了一些思路,是dp加上二分查找的方式,还能够用单调队列优化。

但看了网上的许多代码和博客都觉得不太明白单调队列的应用,看来真的还是太菜了。

单调队列掌握不熟练(其实什么也不知道了,虽然之前是讲过的)

那就换一种思路,不用单调队列,二分+dp其实就能搞出来。

怎么能看出这道题是二分的呢?其实因为可以分析数据看出,花费的数量是成单调递增的,满足二分是单调性的情况,所以我们可以用二分答案的形式。

主函数里我就用了一个二分答案

int main()
{
    scanf("%lld%lld%lld",&n,&d,&k);
    for(ll i=1;i<=n;i++)
    {
        scanf("%lld%lld",&a[0][i],&a[1][i]);//输入距离和费用
    }
    ll l=0;//从零开始
    ll r=1000010;//随便定的一个右端点值
    ll mid;
    while(l<=r)//二分答案模板
    {
        mid=(l+r)>>1;
        if(check(mid))
        {
            ans=mid;//最优解是mid
            r=mid-1;
        }
        else
        {    
            l=mid+1;
        }
    }
}

二分当然还少不了check函数

那么我们的dp也就包含在check函数当中

然后呢

从题中就可以读出改造后机器人可以行走的步数的最小值d-g以及最大值d+g,就大概有了一个范围;

那既然是dp,就应该使用状态转移

在这里其实又可以有两种转移的方式

1.从当前点开始像前面转移,就可已从前面找可以使它跳动的距离最大的值,并且这个值又在范围内

转移方程(最优值) f[当前点]=max(f[从当前点往前面找]+a[1][当前点](当前点的价值),f[当前点](已经保存的最优值));

当这个最优值比预期的k大于或等于时

就说明存在这样的一个修改值满足条件

之后就是二分答案的查找

代码如下

bool check(int x)
{
    ll left=d-x;
    if(d-x<0)
    {
        left=1;//默认的最小值为1,避免越界
    }
    ll right=d+x;
    memset(f,-127,sizeof(f));//初始化数组为一个特别小的数
    f[0]=0;
    for(ll i=1;i<=n;i++)
    {
        for(ll j=i-1;j>=0;j--)//从当前点之前的开始找
        {
            if(a[0][i]-a[0][j]<left)//如果距离比最小的值都小,就忽略可以不修改
            {
                continue;
            }
            if(a[0][i]-a[0][j]>right)//如果最大的距离都满足不了,结束不用找
            {
                break;
            }
            f[i]=max(f[i],f[j]+a[1][i]);//转移方程
            if(f[i]>=k)//满足条件
            {
                return true;
            }    
        }
    } 
    return false;
}

2.从当前的格子向后转移,顺着找最优解

这样又怎么办呢?

相信大佬秒看就知道了

当前的点就是从0开始,在n之前的所有点

转移方程为f[后面的点]=max(f[后面的点](已经储存的最优解),f[当前点](当前最优解)+a[1][后面点]);

代码就在下面了

bool check(int x)
{
    ll left=d-x;
    if(d-x<0)
    {
        left=1;
    }
    ll right=d+x;
    memset(f,-127,sizeof(f));//初始化不用说
    f[0]=0;/没有走时的最优解为0
    for(ll i=0;i<n;i++)//有没有等于号都无所谓了
    {
        for(ll j=i+1;j<=n;j++)//从当前点后面的一个点开始,也可以就从i点来
        {
            if(a[0][j]-a[0][i]<left)
            {
                continue;
            }
            if(a[0][j]-a[0][i]>right)
            {
                break;
            }
            f[j]=max(f[j],f[i]+a[1][j]);//转移方程向后面转移
            if(f[j]>=k)
            {
                return true;
            }    
        }
    } 
    return false;
}

完整代码1

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,d,k,ans;
ll a[2][1000010];
ll f[10000010];
bool check(int x)
{
    ll left=d-x;
    if(d-x<0)
    {
        left=1;
    }
    ll right=d+x;
    memset(f,-127,sizeof(f));
    f[0]=0;
    for(ll i=1;i<=n;i++)
    {
        for(ll j=i-1;j>=0;j--)
        {
            if(a[0][i]-a[0][j]<left)
            {
                continue;
            }
            if(a[0][i]-a[0][j]>right)
            {
                break;
            }
            f[i]=max(f[i],f[j]+a[1][i]);
            if(f[i]>=k)
            {
                return true;
            }    
        }
    } 
    return false;
}
int main()
{
    scanf("%lld%lld%lld",&n,&d,&k);
    for(ll i=1;i<=n;i++)
    {
        scanf("%lld%lld",&a[0][i],&a[1][i]);
    }
    ll l=0;
    ll r=1000010;
    ll mid;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(check(mid))
        {
            ans=mid;
            r=mid-1;
        }
        else
        {    
            l=mid+1;
        }
    }
    printf("%lld",ans);
    return 0;
} 

完整代码2

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,d,k,ans;
ll a[2][1000010];
ll f[10000010];
bool check(int x)
{
    ll left=d-x;
    if(d-x<0)
    {
        left=1;
    }
    ll right=d+x;
    memset(f,-127,sizeof(f));
    f[0]=0;
    for(ll i=0;i<=n;i++)
    {
        for(ll j=i;j<=n;j++)
        {
            if(a[0][j]-a[0][i]<left)
            {
                continue;
            }
            if(a[0][j]-a[0][i]>right)
            {
                break;
            }
            f[j]=max(f[j],f[i]+a[1][j]);//转移方程从前一个格子转移过来 
            if(f[j]>=k)
            {
                return true;
            }    
        }
    } 
    return false;
}
int main()
{
    scanf("%lld%lld%lld",&n,&d,&k);
    for(ll i=1;i<=n;i++)
    {
        scanf("%lld%lld",&a[0][i],&a[1][i]);
    }
    ll l=0;
    ll r=1000010;
    ll mid;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(check(mid))
        {
            ans=mid;
            r=mid-1;
        }
        else
        {
            l=mid+1;
        }
    }
    printf("%lld",ans);
    return 0;
} 

好了,这道题算是比较明白了,没有任何优化,在洛谷上也是可以AC的

之后搞懂了单调队列优化,再回头来改的更完善

如果有不足之处,就请大佬来为本蒟蒻提出来

就是这样

posted @ 2019-02-13 23:59  JBLee  阅读(249)  评论(0编辑  收藏  举报