三点坐标,求三角形面积 ,一个点判断是否在三角形中 c++

给定二维平面中的三个坐标点,求三角形面积

通过一波向量推导和余弦函数公式,能推导出来

s = |(x1y2 - x1y3 - x2y1 + x3y1 + x2y3 - x3y2) / 2|

这最后的公式公式记不住,还是记上面的行列式吧

 

以下是c++实现的代码

 1 #include <iostream>
 2 #include <cmath>
 3 using namespace std;
 4 
 5 struct point {
 6     double x, y;
 7     point(double x,double y) {
 8         point::x = x;
 9         point::y = y;
10     }
11 };
12 
13 double triangle(point a, point b, point c) {
14     return fabs((a.x * b.y - a.x * c.y - b.x * a.y + c.x * a.y + b.x * c.y - c.x * b.y)/ 2.0);
15 }
16 
17 int main() {
18     point a(0,0);
19     point b(1,0);
20     point c(0.5,0.5);
21     cout << triangle(a,b,c);
22     return 0;
23 }

 

判断一个点是否在这个三角形中

思路:若该点在三角形中,则 S(ABC) =  S(ABP) + S(ACP) + S(BCP)

实现代码

 1 #include <iostream>
 2 #include <cmath>
 3 using namespace std;
 4 
 5 struct point {
 6     double x, y;
 7     point(double x, double y) {
 8         point::x = x;
 9         point::y = y;
10     }
11 };
12 
13 double triangle(point a, point b, point c) {
14     return fabs((a.x * b.y - a.x * c.y - b.x * a.y + c.x * a.y + b.x * c.y - c.x * b.y) / 2.0);
15 }
16 
17 bool in_triangle(point a, point b, point c, point p) {
18     double s = triangle(a, b, c);
19     double s1 = triangle(a, b, p);
20     double s2 = triangle(a, c, p);
21     double s3 = triangle(b, c, p);
22     return s == (s1 + s2 + s3) ? true : false;
23 }
24 
25 int main() {
26     point a(0, 0);
27     point b(1, 0);
28     point c(0.5, 0.5);
29     point p(1,1);
30     cout << in_triangle(a,b,c,p);
31     return 0;
32 }

 

posted @ 2020-04-08 18:03  世味  阅读(1538)  评论(0编辑  收藏  举报