Fork me on GitHub

【Spark篇】---Spark中Shuffle文件的寻址

一、前述

Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的。

二、架构图

三、基本概念:

1) MapOutputTracker

MapOutputTracker是Spark架构中的一个模块,是一个主从架构。管理磁盘小文件的地址。

  • MapOutputTrackerMaster是主对象,存在于Driver中
  • MapOutputTrackerWorker是从对象,存在于Excutor中

2) BlockManager

BlockManager块管理者,是Spark架构中的一个模块,也是一个主从架构。

  • BlockManagerMaster,主对象,存在于Driver中

BlockManagerMaster会在集群中有用到广播变量和缓存数据或者删除缓存数据的时候,通知BlockManagerSlave传输或者删除数据。

  • BlockManagerWorker,从对象,存在于Excutor中

BlockManagerWorker会与BlockManagerWorker之间通信。

无论在Driver端的BlockManager还是在Excutor端的BlockManager都含有四个对象:

① DiskStore:负责磁盘的管理。

② MemoryStore:负责内存的管理。

③ ConnectionManager:负责连接其他的 BlockManagerWorker。

④ BlockTransferService:负责数据的传输。

 

四、Shuffle文件寻址流程

a) map task执行完成后,会将task的执行情况和磁盘小文件的地址封装到MpStatus对象中通过MapOutputTrackerWorker对象向Driver中的MapOutputTrackerMaster汇报。

b) 在所有的map task执行完毕后,Driver中就掌握了所有的磁盘小文件的地址。

c) reduce task执行之前,会通过Excutor中MapOutPutTrackerWorker向Driver端的MapOutputTrackerMaster获取磁盘小文件的地址。

d) 获取到磁盘小文件的地址后,会通过BlockManager中的ConnectionManager连接数据所在节点上的ConnectionManager,然后通过BlockTransferService进行数据的传输。

e) BlockTransferService默认启动5个task去节点拉取数据。默认情况下,5个task拉取数据量不能超过48M。拉取过来的数据放在Executor端的shuffle聚合内存中(spark.shuffle.memeoryFraction 0.2), 如果5个task一次拉取的数据放不到shuffle内存中会有OOM,如果放下一次,不会有OOM,以后放不下的会放磁盘。

 

五、扩展补充如何避免OOM

  1、拉去数据 少一些。

  2、提高ExecutorShuffle聚合内存。

  3、提高executor内存。

 

posted @ 2018-03-07 19:55  L先生AI课堂  阅读(410)  评论(0编辑  收藏  举报