参考资料

http://www.cnblogs.com/Cmpl/archive/2011/06/05/2073217.html

http://www.cnblogs.com/yc_sunniwell/archive/2010/06/27/1766236.html

http://www.cnblogs.com/suimeng/p/4560056.html

http://blog.csdn.net/gabriel1026/article/details/6311339

http://www.cnblogs.com/zhangbaochong/p/5164994.html

一、基本概念

平衡二叉查找树

简称平衡二叉树。由前苏联的数学家Adelse-Velskil和Landis在1962年提出的高度平衡的二叉树,根据科学家的英文名也称为AVL树。它具有如下几个性质:

  1. 可以是空树。
  2. 假如不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过1

平衡二叉树一定是二叉查找树。

平衡因子

左子树的高度减去右子树的高度。由平衡二叉树的定义可知,平衡因子的取值只可能为0,1,-1.分别对应着左右子树等高,左子树比较高,右子树比较高。

最小失衡子树:在新插入的结点向上查找,以第一个平衡因子的绝对值超过1的结点为根的子树称为最小不平衡子树。也就是说,一棵失衡的树,是有可能有多棵子树同时失衡的,如下。而这个时候,我们只要调整最小的不平衡子树,就能够将不平衡的树调整为平衡的树。

二、算法

平衡二叉树算法思想

若 向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。

1. LL型

个人理解

左旋:旋转中心的父节点绕旋转中心向左下旋转

右旋:旋转中心的父节点绕旋转中心向右下旋转

    平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向右旋转一次即可,如图所示,原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树(图上忘在A于Brh之间标实线)

 

 

 

2. RR型

    平衡二叉树某一节点的右孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。

 

 

3. LR型(最小失衡子树的根节点(A)的左孩子(B)的右孩子(C)为旋转点左旋,然后再以这个点(C)右旋)

      平衡二叉树某一节点的左孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。

 

 

4. RL型(最小失衡子树的根节点(A)的右孩子(B)的左孩子(C)为旋转点右旋,然后再以这个点(C)左旋)

      平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。

删除节点

删除则稍微麻烦点,因为我们删的不一定是叶子,如果只是叶子,那就好办,如果不是呢?我们最通常的做法就是把这个节点往下挪,直到它变为叶子为止,看图。


也许你要问,如果和左子树最大节点交换后,要删除的节点依然不是叶子,那怎么办呢?那继续呗,看图:


那左子树不存在的情况下呢?你可以查找右子树的最小节点,和上面是类似的,图我就不画了。

三、示例代码

  1 #include <iostream>
  2 #include <algorithm>
  3 using namespace std;
  4 #pragma once
  5 
  6 //平衡二叉树结点
  7 template <typename T>
  8 struct AvlNode
  9 {
 10     T data;
 11     int height; //结点所在高度
 12     AvlNode<T> *left;
 13     AvlNode<T> *right;
 14     AvlNode<T>(const T theData) : data(theData), left(NULL), right(NULL), height(0){}
 15 };
 16 
 17 //AvlTree
 18 template <typename T>
 19 class AvlTree
 20 {
 21 public:
 22     AvlTree<T>(){}
 23     ~AvlTree<T>(){}
 24     AvlNode<T> *root;
 25     //插入结点
 26     void Insert(AvlNode<T> *&t, T x);
 27     //删除结点
 28     bool Delete(AvlNode<T> *&t, T x);
 29     //查找是否存在给定值的结点
 30     bool Contains(AvlNode<T> *t, const T x) const;
 31     //中序遍历
 32     void InorderTraversal(AvlNode<T> *t);
 33     //前序遍历
 34     void PreorderTraversal(AvlNode<T> *t);
 35     //最小值结点
 36     AvlNode<T> *FindMin(AvlNode<T> *t) const;
 37     //最大值结点
 38     AvlNode<T> *FindMax(AvlNode<T> *t) const;
 39 private:
 40     //求树的高度
 41     int GetHeight(AvlNode<T> *t);
 42     //单旋转 左
 43     AvlNode<T> *LL(AvlNode<T> *t);
 44     //单旋转 右
 45     AvlNode<T> *RR(AvlNode<T> *t);
 46     //双旋转 右左
 47     AvlNode<T> *LR(AvlNode<T> *t);
 48     //双旋转 左右
 49     AvlNode<T> *RL(AvlNode<T> *t);
 50 };
 51 
 52 template <typename T>
 53 AvlNode<T> * AvlTree<T>::FindMax(AvlNode<T> *t) const
 54 {
 55     if (t == NULL)
 56         return NULL;
 57     if (t->right == NULL)
 58         return t;
 59     return FindMax(t->right);
 60 }
 61 
 62 template <typename T>
 63 AvlNode<T> * AvlTree<T>::FindMin(AvlNode<T> *t) const
 64 {
 65     if (t == NULL)
 66         return NULL;
 67     if (t->left == NULL)
 68         return t;
 69     return FindMin(t->left);
 70 }
 71 
 72 
 73 template <typename T>
 74 int AvlTree<T>::GetHeight(AvlNode<T> *t)
 75 {
 76     if (t == NULL)
 77         return -1;
 78     else
 79         return t->height;
 80 }
 81 
 82 
 83 //单旋转
 84 //左左插入导致的不平衡
 85 template <typename T>
 86 AvlNode<T> * AvlTree<T>::LL(AvlNode<T> *t)
 87 {
 88     AvlNode<T> *q = t->left;
 89     t->left = q->right;
 90     q->right = t;
 91     t = q;
 92     t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;
 93     q->height = max(GetHeight(q->left), GetHeight(q->right)) + 1;
 94     return q;
 95 }
 96 
 97 //单旋转
 98 //右右插入导致的不平衡
 99 template <typename T>
100 AvlNode<T> * AvlTree<T>::RR(AvlNode<T> *t)
101 {
102     AvlNode<T> *q = t->right;
103     t->right = q->left;
104     q->left = t;
105     t = q;
106     t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;
107     q->height = max(GetHeight(q->left), GetHeight(q->right)) + 1;
108     return q;
109 }
110 
111 //双旋转 
112 //插入点位于t的左儿子的右子树
113 template <typename T>
114 AvlNode<T> * AvlTree<T>::LR(AvlNode<T> *t)
115 {
116     //双旋转可以通过两次单旋转实现
117     //对t的左结点进行RR旋转,再对根节点进行LL旋转
118     RR(t->left);
119     return LL(t);
120 }
121 
122 //双旋转
123 //插入点位于t的右儿子的左子树
124 template <typename T>
125 AvlNode<T> * AvlTree<T>::RL(AvlNode<T> *t)
126 {
127     LL(t->right);
128     return RR(t);
129 }
130 
131 
132 template <typename T>
133 void AvlTree<T>::Insert(AvlNode<T> *&t, T x)
134 {
135     if (t == NULL)
136         t = new AvlNode<T>(x);
137     else if (x < t->data)
138     {
139         Insert(t->left, x);
140         //判断平衡情况
141         if (GetHeight(t->left) - GetHeight(t->right) > 1)
142         {
143             //分两种情况 左左或左右
144 
145             if (x < t->left->data)//左左
146                 t = LL(t);
147             else                  //左右
148                 t = LR(t);
149         }
150     }
151     else if (x > t->data)
152     {
153         Insert(t->right, x);
154         if (GetHeight(t->right) - GetHeight(t->left) > 1)
155         {
156             if (x > t->right->data)
157                 t = RR(t);
158             else
159                 t = RL(t);
160         }
161     }
162     else
163         ;//数据重复
164     t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;
165 }
166 
167 template <typename T>
168 bool AvlTree<T>::Delete(AvlNode<T> *&t, T x)
169 {
170     //t为空 未找到要删除的结点
171     if (t == NULL)
172         return false;
173     //找到了要删除的结点
174     else if (t->data == x)
175     {
176         //左右子树都非空
177         if (t->left != NULL && t->right != NULL)
178         {//在高度更大的那个子树上进行删除操作
179 
180             //左子树高度大,删除左子树中值最大的结点,将其赋给根结点
181             if (GetHeight(t->left) > GetHeight(t->right))
182             {
183                 t->data = FindMax(t->left)->data;
184                 Delete(t->left, t->data);
185             }
186             else//右子树高度更大,删除右子树中值最小的结点,将其赋给根结点
187             {
188                 t->data = FindMin(t->right)->data;
189                 Delete(t->right, t->data);
190             }
191         }
192         else
193         {//左右子树有一个不为空,直接用需要删除的结点的子结点替换即可
194             AvlNode<T> *old = t;
195             t = t->left ? t->left: t->right;//t赋值为不空的子结点
196             delete old;
197         }
198     }
199     else if (x < t->data)//要删除的结点在左子树上
200     {
201         //递归删除左子树上的结点
202         Delete(t->left, x);
203         //判断是否仍然满足平衡条件
204         if (GetHeight(t->right) - GetHeight(t->left) > 1)
205         {
206             if (GetHeight(t->right->left) > GetHeight(t->right->right))
207             {
208                 //RL双旋转
209                 t = RL(t);
210             }
211             else
212             {//RR单旋转
213                 t = RR(t);
214             }
215         }
216         else//满足平衡条件 调整高度信息
217         {
218             t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;
219         }
220     }
221     else//要删除的结点在右子树上
222     {
223         //递归删除右子树结点
224         Delete(t->right, x);
225         //判断平衡情况
226         if (GetHeight(t->left) - GetHeight(t->right) > 1)
227         {
228             if (GetHeight(t->left->right) > GetHeight(t->left->left))
229             {
230                 //LR双旋转
231                 t = LR(t);
232             }
233             else
234             {
235                 //LL单旋转
236                 t = LL(t);
237             }
238         }
239         else//满足平衡性 调整高度
240         {
241             t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;
242         }
243     }
244     
245     return true;
246 }
247 
248 //查找结点
249 template <typename T>
250 bool AvlTree<T>::Contains(AvlNode<T> *t, const T x) const
251 {
252     if (t == NULL)
253         return false;
254     if (x < t->data)
255         return Contains(t->left, x);
256     else if (x > t->data)
257         return Contains(t->right, x);
258     else
259         return true;
260 }
261 
262 //中序遍历
263 template <typename T>
264 void AvlTree<T>::InorderTraversal(AvlNode<T> *t)
265 {
266     if (t)
267     {
268         InorderTraversal(t->left);
269         cout << t->data << ' ';
270         InorderTraversal(t->right);
271     }
272 }
273 
274 //前序遍历
275 template <typename T>
276 void AvlTree<T>::PreorderTraversal(AvlNode<T> *t)
277 {
278     if (t)
279     {
280         cout << t->data << ' ';
281         PreorderTraversal(t->left);
282         PreorderTraversal(t->right);
283     }
284 }

cpp

 1 #include "AvlTree.h"
 2 
 3 int main()
 4 {
 5     AvlTree<int> tree;
 6     int value;
 7     int tmp;
 8     cout << "请输入整数建立二叉树(-1结束):" << endl;
 9     while (cin >> value)
10     {
11         if (value == -1)
12             break;
13         tree.Insert(tree.root,value);
14     }
15     cout << "中序遍历";
16     tree.InorderTraversal(tree.root);
17     cout << "\n前序遍历:";
18     tree.PreorderTraversal(tree.root);
19     cout << "\n请输入要查找的结点:";
20     cin >> tmp;
21     if (tree.Contains(tree.root, tmp))
22         cout << "已查找到" << endl;
23     else
24         cout << "值为" << tmp << "的结点不存在" << endl;
25     cout << "请输入要删除的结点:";
26     cin >> tmp;
27     tree.Delete(tree.root, tmp);
28     cout << "删除后的中序遍历:";
29     tree.InorderTraversal(tree.root);
30     cout << "\n删除后的前序遍历:";
31     tree.PreorderTraversal(tree.root);
32 }