1.题目要求

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

2.分析

这道题,首先需要理解中位数(Median)的定义。

举例:1,2,3的中位数是2,1,2,3,4的中位数是(2+3)/2=2.5。

弄清楚定义后,可以想出O(m+n)时间复杂度的算法,也就是两个下班分别指向A和B比较当前数A[i]和B[j],较小者的下标做自增操作,指导进行(m+n)/2次自增操作,或者某一个数组下标越界为止,代码如下:

 1 class Solution {
 2 public:
 3     double findMedianSortedArrays(int A[], int m, int B[], int n) {
 4         int middle ;
 5         int temp = (m+n)%2;
 6         if(temp == 1)
 7             middle = (m+n)/2;
 8         else
 9             middle=(m+n)/2-1;
10         int i=0,j=0;
11         int count=0;
12         int flag=0;
13         double res;
14         while (count<middle&&i<m&&j<n)
15         {
16             if(A[i]<B[j]){
17                 i++;
18             }
19             else if (A[i]>B[j])
20             {
21                 j++;
22             }else
23             //当A[i]==B[j]时,两个数组下标移动需要取决于下一个数,比如{1,1}和{1,2};
24             //1==1因此需要i++,如果是{1,2}和{1,1},则j++
25             {
26                 if(i+1<m&&A[i+1]==A[i])
27                     i++;
28                 else if(j+1<n&&B[j+1]==B[j])
29                     j++;
30                 else
31                     i++;
32 
33 
34             }
35             count++;
36         }
37         
38         if (i==m)//数组A已经越界
39         {
40             if(temp==0){
41                 res = (B[j+middle-count]+B[j+middle-count+1])/2.0;
42             }else
43                 res = B[j+middle-count];
44 
45         }else if (j==n)//数组B已经越界
46         {
47             if(temp==0){
48                 res = (A[i+middle-count]+A[i+middle-count+1])/2.0;
49             }else
50                 res = A[i+middle-count];
51         }else
52         {
53             if (temp == 0)
54             {
55                 if(i+1<m && A[i+1]<B[j])
56                     res = (A[i]+A[i+1])/2.0;
57                 else if(j+1<n && B[j+1]<A[i])
58                     res = (B[j]+B[j+1])/2.0;
59                 else
60                     res = (B[j]+A[i])/2.0;
61 
62             }else
63             {
64                 res = A[i]>B[j] ? B[j]:A[i];
65             }
66         }
67 
68         return  res;
69 
70     }
71 };

提交代码,呵呵,能够Accepted。但是,题目要求时O(log(m+n)),因此我们需要想其他更好的算法,重点就是抓住sorted这个字眼。看到时间复杂度O(log(m+n)),我们会立刻想到二分查找思想,因此我们就按这个思路去寻找更好的算法。代码如下:

 1 double findKth(int a[], int m, int b[], int n, int k)
 2 {
 3     //always assume that m is equal or smaller than n
 4     if (m > n)
 5         return findKth(b, n, a, m, k);
 6     if (m == 0)
 7         return b[k - 1];
 8     if (k == 1)
 9         return min(a[0], b[0]);
10     //divide k into two parts
11     int pa = min(k / 2, m), pb = k - pa;
12     if (a[pa - 1] < b[pb - 1])
13         return findKth(a + pa, m - pa, b, n, k - pa);
14     else if (a[pa - 1] > b[pb - 1])
15         return findKth(a, m, b + pb, n - pb, k - pb);
16     else
17         return a[pa - 1];
18 }
19 
20 class Solution
21 {
22 public:
23     double findMedianSortedArrays(int A[], int m, int B[], int n)
24     {
25         int total = m + n;
26         if (total & 0x1)
27             return findKth(A, m, B, n, total / 2 + 1);
28         else
29             return (findKth(A, m, B, n, total / 2)
30                     + findKth(A, m, B, n, total / 2 + 1)) / 2;
31     }
32 };