第十四章 套接字编程
14.1 使用TCP
14.1.1 从服务器上获取数据
-module(socket_examples).
-export([nano_get_url/0]).
-import(lists, [reverse/1]).
nano_get_url() ->
nano_get_url("www.google.com").
nano_get_url(Host) ->
%% 链接到主机的80端口, 以二进制模式打开套接字, 原始方式发送TCP数据
{ok, Socket} = gen_tcp:connect(Host, 80, [binary, {packet, 0}]),
%% 发送GET消息到套接字, 使用reverse_data接收数据
ok = gen_tcp:send(Socket, "GET / HTTP/1.0\r\n\r\n"),
receive_data(Socket, []).
receive_data(Socket, SoFar) ->
%% 回应消息一帧一帧的返回, 因此这里使用receive方式接收
receive
{tcp, Socket, Bin} ->
%% 将接收到的数据添加到列表SoFar中
receive_data(Socket, [Bin|SoFar]);
{tcp_closed, Socket} ->
%% 因为每接收一帧数据都是放在SoFar的头部, 因此接收完成后需要翻转列表得到正常顺序的数据
list_to_binary(reverse(SoFar))
end.
运行结果:
1> socket_examples:nano_get_url().
<<"HTTP/1.0 200 OK\r\nDate: Mon, 04 Nov 2013 02:32:00 GMT\r\nExpires: -1\r\nCache-Control: private, max-age=0\r\nContent-Type: "...>>
14.1.2 一个简单的TCP服务器
服务端:
start_nano_server() ->
%% 监听来自端口2345的链接, 设置包规则为带有4字节长的包头
{ok, Listen} = gen_tcp:listen(2345, [binary, {packet, 4}, {reuseaddr, true}, {active, true}]),
%% 只处理正常打开的套接字
{ok, Socket} = gen_tcp:accept(Listen),
%% 只处理一个链接
gen_tcp:close(Listen),
%% 链接处理
loop(Socket).
loop(Socket) ->
receive
{tcp, Socket, Bin} ->
%% 输出二进制数据
io:format("Server received binary = ~p~n", [Bin]),
%% 格式转换
Str = binary_to_term(Bin),
io:format("Server (unpacked) ~p~n", [Str]),
%% 对字符串求值
Reply = string2value(Str),
io:format("Server replying = ~p~n", [Reply]),
%% 对结果编码后发给套接字
gen_tcp:send(Socket, term_to_binary(Reply)),
loop(Socket);
{tcp_closed, Socket} ->
io:format("Server socket closed~n")
end.
客户端:
nano_client_eval(Str) ->
%% 链接指定主机的2345端口, 发送数据时包头设置为4字节长
{ok, Socket} = gen_tcp:connect("localhost", 2345, [binary, {packet, 4}]),
%% 调用term_to_binary进行数据转换后向服务端发送数据
ok = gen_tcp:send(Socket, term_to_binary(Str)),
receive
%% 接收返回并输出
{tcp, Socket, Bin} ->
io:format("Client received binary = ~p~n", [Bin]),
Val = binary_to_term(Bin),
io:format("Client result = ~p~n", [Val]),
gen_tcp:close(Socket)
end.
运行结果:
# 首先启动服务端
1> socket_examples:start_nano_server().
# 然后打开另一个erl窗口启动客户端
# 随后客户端将服务端的计算结果接收后打印输出
1> socket_examples:nano_client_eval("list_to_tuple([2+3*4, 10+20])").
Client received binary = <<131,104,2,97,14,97,30>>
Client result = {14,30}
ok
# 切换到服务端的erl窗口可以看到如下输出
Server received binary = <<131,107,0,29,108,105,115,116,95,116,111,95,116,117,
112,108,101,40,91,50,43,51,42,52,44,32,49,48,43,50,
48,93,41>>
Server (unpacked) "list_to_tuple([2+3*4, 10+20])"
Server replying = {14,30}
Server socket closed
ok
而这里服务端对客户端提交的字符串表达式进行计算的实现在string2value函数中
string2value(Str) ->
%% 按字符分解字符串
{ok, Tokens, _} = erl_scan:string(Str ++ "."),
%% 生成解析表达式
{ok, Exprs} = erl_parse:parse_exprs(Tokens),
Bindings = erl_eval:new_bindings(),
%% 运行表达式
{value, Value, _} = erl_eval:exprs(Exprs, Bindings),
Value.
14.1.3 改进服务器
顺序型服务器
一次只接收一个连接
%% 接收连接后处理请求然后再次调用seq_loop等待下一个连接
start_seq_server() ->
{ok, Listen} = gen_tcp:listen(2345, [binary, {packet, 4}, {reuseaddr, true}, {active, true}]),
seq_loop(Listen).
seq_loop(Listen) ->
{ok, Socket} = gen_tcp:accept(Listen),
loop(Socket),
seq_loop(Listen).
并行服务器
一次可以接收多个并行连接
%% 接收连接后启动新的进程来处理套接字
start_parallel_server() ->
{ok, Listen} = gen_tcp:listen(2345, [binary, {packet, 4}, {reuseaddr, true}, {active, true}]),
spawn(fun() ->par_connect(Listen) end).
par_connect(Listen) ->
{ok, Socket} = gen_tcp:accept(Listen),
spawn(fun() ->par_connect(Listen) end),
loop(Socket).
14.2 控制逻辑
14.2.1 主动型消息接收(非阻塞)
建立主动套接字后, 一个独立的客户机可能向服务端无限制的发送成千上万条消息, 如果超过了服务器的处理速度, 则可能导致系统崩溃。因为其不会阻塞客户端, 因此被称为异步服务器, 实现形式如下:
%% 设置active为true即为异步方式
{ok, Listen} = gen_tcp:listen(Port, [..., {active, true}, ...]),
{ok, Socket} = gen_tcp:accept(Listen),
loop(Socket).
loop(Socket) ->
receive
{tcp, Socket, Data} ->
%% 数据处理
{tcp_closed, Socket} ->
...
end.
14.2.2 被动型消息接收(阻塞)
建立被动套接字后, 只有服务端调用gen_tcp:recv(Socket, N)时才会接收来自套接字的数据, 且只接收N字节的数据, 因此不会因为客户端的大量请求而导致崩溃, 实现形式如下:
%% 设置active为false即为阻塞方式
{ok, Listen} = gen_tcp:listen(Port, [..., {active, false}, ...]),
{ok, Socket} = gen_tcp:accept(Listen),
loop(Socket).
loop(Socket) ->
case gen_tcp:recv(Socket, N) of
{ok, B} ->
%% 数据处理
loop(Socket);
{error, closed} ->
...
end.
14.2.3 混合型模式(半阻塞)
半阻塞模式的套接字是主动的但仅针对一个消息, 需要显式的调用inet:setopts重新激活以便接收下一个消息, 在此之前系统将处于阻塞状态, 实现形式如下:
%% 设置active为once即为异步方式
{ok, Listen} = gen_tcp:listen(Port, [..., {active, once}, ...]),
{ok, Socket} = gen_tcp:accept(Listen),
loop(Socket).
loop(Socket) ->
receive
{tcp, Socket, Data} ->
%% 数据处理
inet:setopts(Socket, [{active, once}]),
loop(Socket);
{tcp_closed, Socket} ->
...
end.
14.3 连接从何而来
使用函数inet:peername(Socket)可以获取客户端信息。
inet:peername(Socket) -> {ok, {IP_Address, Port} | {error, Why}}
14.4 套接字的出错处理
测试代码
%% 服务端接收数据后调用atom_to_list处理数据
error_test_server() ->
{ok, Listen} = gen_tcp:listen(4321, [binary, {packet, 2}]),
{ok, Socket} = gen_tcp:accept(Listen),
error_test_server_loop(Socket).
error_test_server_loop(Socket) ->
receive
{tcp, Socket, Data} ->
io:format("received:~p~n", [Data]),
atom_to_list(Data),
error_test_server_loop(Socket)
end.
%% 客户端连接后发生二进制数据使atom_to_list发生异常
error_test() ->
spawn(fun() ->error_test_server() end),
sleep(2000),
{ok, Socket} = gen_tcp:connect("localhost", 4321, [binary, {packet, 2}]),
io:format("connected to:~p~n", [Socket]),
gen_tcp:send(Socket, <<"123">>),
receive
Any ->
io:format("Any=~p~n", [Any])
end.
运行结果:
# 服务端异常结果
1> socket_examples:error_test_server().
received:<<"123">>
exception error: bad argument
in function atom_to_list/1
called as atom_to_list(<<"123">>)
in call from socket_examples:error_test_server_loop/1 (socket_examples.erl, line 120)
# 客户端异常结果
1> socket_examples:error_test().
=ERROR REPORT==== 5-Nov-2013::10:19:27 ===
Error in process <0.50.0> with exit value: {{badmatch,{error,eaddrinuse}},[{socket_examples,error_test_server,0,[{file,"socket_examples.erl"},{line,113}]}]}
connected to:#Port<0.2291>
Any={tcp_closed,#Port<0.2291>}
ok
14.5 UDP
14.5.1 最简单的UDP服务器和客户机
UDP服务器的形式
server(Port) ->
{ok, Socket} = gen_udp:open(Port, [binary]),
loop(Socket).
loop(Socket) ->
receive
{udp, Socket, Host, Port, Bin} ->
BinReply = ... ,
gen_udp:send(Socket, Host, Port, BinReply),
loop(Socket)
end.
UDP客户机的形式
client(Request) ->
{ok, Socket} = gen_udp:open(0, [binary]),
ok = gen_udp:send(Socket, "localhost", 4000, Request),
Value = receive
{udp, Socket, _, _, Bin} ->{ok, Bin}
%% 因为UDP协议传输的不可靠性, 有可能没有得到服务端的回应, 因此这里要设置超时时间
after 2000 ->error
end,
gen_udp:close(Socket),
Value.
14.5.2 一个计算阶乘的UDP服务器
服务端实现:
start_server() ->
spawn(fun() ->server(40000) end).
server(Port) ->
{ok, Socket} = gen_udp:open(Port, [binary]),
io:format("server opened socket:~p~n", [Socket]),
loop(Socket).
loop(Socket) ->
receive
{udp, Socket, Host, Port, Bin} = Msg ->
io:format("server received:~p~n", [Msg]),
N = binary_to_term(Bin),
Fac = fac(N),
gen_udp:send(Socket, Host, Port, term_to_binary(Fac)),
loop(Socket)
end.
fac(0) ->1;
fac(N) ->N * fac(N-1).
客户端实现:
client(N) ->
{ok, Socket} = gen_udp:open(0, [binary]),
io:format("client opened socket=~p~n", [Socket]),
ok = gen_udp:send(Socket, "localhost", 40000, term_to_binary(N)),
Value = receive
{udp, Socket, _, _, Bin} = Msg ->
io:format("client received:~p~n", [Msg]),
binary_to_term(Bin)
after 2000 ->0
end,
gen_udp:close(Socket),
Value.
运行结果:
1> udp_test:start_server().
server opened socket:#Port<0.2308>
<0.68.0>
2> udp_test:client(40).
client opened socket=#Port<0.2309>
server received:{udp,#Port<0.2308>,{127,0,0,1},54449,<<131,97,40>>}
client received:{udp,#Port<0.2309>,
{127,0,0,1},
40000,
<<131,110,20,0,0,0,0,0,64,37,5,255,100,222,15,8,126,242,
199,132,27,232,234,142>>}
815915283247897734345611269596115894272000000000
14.5.3 关于UDP协议的其他注意事项
因为UDP数据报可能被传输两次, 因此为了避免这个问题, 可以使用make_ref函数为请求创建唯一标示。
客户端实现:
client(Request) ->
{ok, Socket} = gen_udp:open(0, [binary]),
Ref = make_ref(),
B1 = term_to_binary(Ref, Request),
ok = gen_udp:send(Socket, "localhost", 40000, B1),
wait_for_ref(Socket, Ref).
wait_for_ref(Socket, Ref) ->
receive
{udp, Socket, _, _, Bin} ->
case binary_to_term(Bin) of
%% 在client(Request)函数中已经为请求添加了唯一标示, 因此这里要从 {Ref, Val} 这种格式的数据中提取出真正的请求
{Ref, Val} ->Val;
{_SomeOtherRef, _} ->
%% 对于其他数据则不用处理
wait_for_ref(Socket, Ref)
end;
after 1000 ->
...
end.
14.6 向多台机器广播消息
-module(broadcast).
-compile(export_all).
send(IoList) ->
%% 获取网卡en0的IP信息
case inet:ifget("en0", [broadaddr]) of
{ok, [{broadaddr, Ip}]} ->
%% 打开5010端口
{ok, S} = gen_udp:open(5010, [{broadcast, true}]),
%% 向本地网络的6000端口广播数据
gen_udp:send(S, Ip, 6000, IoList),
gen_udp:close(S);
_ ->
io:format("Bad interface name, or broadcastng not supported\n")
end.
listen() ->
%% 监听6000端口的广播
{ok, _} = gen_udp:open(6000),
loop().
loop() ->
receive
Any ->
%% 打印任何收到的信息
io:format("received:~p~n", [Any]),
loop()
end.
在单台机器上测试:
# 一个shell打开监听
1> broadcast:listen().
# 一个shell发送广播
1> broadcast:send(["test"]).
# 可以看到监听端的输出
1> broadcast:listen().
received:{udp,#Port<0.2337>,{10,0,1,224},5010,"test"}