网络编程之并发编程——多进程中的join方法

网络编程之并发编程——多进程中的join方法

一、Process对象的join方法

在主进程运行过程中如果想并发地执行其它的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况:

1、在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源。

2、如果主进程的任务在执行到某一个阶段时,需要等待子进程完毕后才能继续执行,就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是join方法的作用。

from multiprocessing import Process
import time
import random
import os
def task():
    print('%s is piaoing' %os.getpid())
    time.sleep(random.randrange(1,3))
    print('%s is piao end' %os.getpid())
if __name__ == '__main__':
    p=Process(target=task)
    p.start()
    p.join() #等待p停止,才执行下一行代码
    print('主')

有了join,程序不就是串行了吗??????

from multiprocessing import Process
import time
import random
def task(name):
    print('%s is piaoing' %name)
    time.sleep(random.randint(1,3))
    print('%s is piao end' %name)
if __name__ == '__main__':
    p1=Process(target=task,args=('egon',))
    p2=Process(target=task,args=('alex',))
    p3=Process(target=task,args=('yuanhao',))
    p4=Process(target=task,args=('wupeiqi',))
    p1.start()
    p2.start()
    p3.start()
    p4.start()
# 有的同学会有疑问: 既然join是等待进程结束, 那么我像下面这样写, 进程不就又变成串行的了吗?
# 当然不是了, 必须明确:p.join()是让谁等?
# 很明显p.join()是让主线程等待p的结束,卡住的是主进程而绝非子进程p,
p1.join()
p2.join()
p3.join()
p4.join()
print('主')

详细解析如下:

进程只要start就会在开始运行了,所以p1~p4.start()时,系统中已经有四个并发的进程了。

而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键。

join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待。

所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间。

上述启动进程与join进程可以简写为:

p_l=[p1,p2,p3,p4]
for p in p_l:
    p.start()
for p in p_l:
    p.join()

posted @ 2019-09-26 10:09  Kwan、C  阅读(288)  评论(0编辑  收藏  举报