CF888E Maximum Subsequence (Meet in the middle,贪心)
题目链接
Solution
Meet in the middle.
考虑到 \(2^{35}\) 枚举会超时,于是分成两半枚举(尽量平均).
然后不能 \(n^2\) 去匹配,需要用到一点贪心:
将数分成 \(p,q\) 两组,那么对于任意数 \(p_i\) ;
它与 \(q\) 数组中组成最大得到的值即为
最大的与 \(p_i\) 之和不超过\(m\) 的数.
然后就可以贪心优化了.
还要注意一点就是最大的两个也要考虑一次.
Code
#include<bits/stdc++.h>
#define N 1<<20
#define ll long long
using namespace std;
ll n,m,w[40],p[N],q[N],ans;
ll cntp,cntq,a[40],b[40];
void dfs1()
{
ll num=(n+1)/2;
for(ll i=0;i<num;i++)a[i]=w[i*2+1];
ll tot=(1<<num)-1;
for(ll i=1;i<=tot;i++)
{
ll Tot=0;
for(ll j=0;j<num;j++)
if((1<<j)&i)
Tot+=a[j],Tot%=m;
p[++cntp]=Tot;
}
}
void dfs2()
{
ll num=n/2;
for(ll i=0;i<num;i++)
b[i]=w[(i+1)*2];
ll tot=(1<<num)-1;
for(ll i=1;i<=tot;i++)
{
ll Tot=0;
for(ll j=0;j<num;j++)
if((1<<j)&i)
Tot+=b[j],Tot%=m;
q[++cntq]=Tot;
}
}
int main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)
scanf("%lld",&w[i]);
sort(w+1,w+n+1);
dfs1(); dfs2();
sort(p+1,p+cntp+1);
sort(q+1,q+cntq+1);
//for(ll i=1;i<=cntp;i++)cout<<p[i]<<' ';cout<<endl;
//for(ll i=1;i<=cntq;i++)cout<<q[i]<<' ';cout<<endl;
int i=0,j=cntq;
while(i<=cntp){
while(p[i]+q[j]>=m) --j;
ans=max(ans,p[i]+q[j]),++i;
}//贪心优化部分
ans=max(ans,(p[cntp]+q[cntq])%m);
cout<<ans<<endl;
}