严格次小生成树[BJWC2010] (树链剖分,倍增,最小生成树)

题目链接

Solution

有几点关键,首先,可以证明次小生成树一定是由最小生成树改变一条边而转化来.
所以需要枚举所有非最小生成树的边\((u,v)\).并且找到 \(u\)\(v\) 的边中最大边和次大边.
为什么要找次大边呢?? 因为可能最大边与要替换的边长度相等,那么这种条件生成的便不是严格的次小生成树.
然后找到 \(u,v\) 之间的次大和最大边有两种方式:

  • 树链剖分+线段树维护
    剖分最小生成树,然后用线段树维护.
    此时线段树节点转移时要考虑左右节点的次大和最大的 \(4\) 个值.
    时间复杂度: \(O(mlogn)\) .
  • 树上 \(st\)
    与倍增求 \(LCA\) 的方式类似,倍增维护信息然后找 \(LCA\) 即可.
    时间复杂度: \(O(mlogn)\) .

然后似乎还可以用 \(LCT\) 来做.时间复杂度也差不多.

Code

倍增版本:

#include<bits/stdc++.h>
#define N 400010
#define M 900010
#define INF 2147483647000000
#define ll long long

using namespace std;

struct edge{
    ll u,v,d;
    ll next;
}G[N<<1];
ll tot=0;
ll head[N];
inline void addedge(ll u,ll v,ll d)
{
    G[++tot].u=u,G[tot].v=v,G[tot].d=d,G[tot].next=head[u],head[u]=tot;
    G[++tot].u=v,G[tot].v=u,G[tot].d=d,G[tot].next=head[v],head[v]=tot;
}

ll bz[N][19];
ll maxi[N][19];
ll mini[N][19];
ll deep[N];
inline void dfs(ll u,ll fa)
{
    bz[u][0]=fa;
    for(ll i=head[u];i;i=G[i].next)
    {
        ll v=G[i].v;
        if(v==fa)continue;
        deep[v]=deep[u]+1ll;
        maxi[v][0]=G[i].d;
        mini[v][0]=-INF;
        dfs(v,u);
    }
}

ll n;
inline void cal()
{
    for(ll i=1;i<=18;++i)
        for(ll j=1;j<=n;++j)
        {
            bz[j][i]=bz[bz[j][i-1]][i-1];
            maxi[j][i]=max(maxi[j][i-1],maxi[bz[j][i-1]][i-1]);
            mini[j][i]=max(mini[j][i-1],mini[bz[j][i-1]][i-1]);
            if(maxi[j][i-1]>maxi[bz[j][i-1]][i-1])mini[j][i]=max(mini[j][i],maxi[bz[j][i-1]][i-1]);
            else if(maxi[j][i-1]<maxi[bz[j][i-1]][i-1])mini[j][i]=max(mini[j][i],maxi[j][i-1]);
        }
}

inline ll LCA(ll x,ll y)
{
    if(deep[x]<deep[y])swap(x,y);
    for(ll i=18;i>=0;--i)
        if(deep[bz[x][i]]>=deep[y])
            x=bz[x][i];
    if(x==y)return x;
    for(ll i=18;i>=0;--i)
        if(bz[x][i]^bz[y][i])
            x=bz[x][i],y=bz[y][i];
    return bz[x][0];
}

inline ll qmax(ll u,ll v,ll maxx)
{
    ll Ans=-INF;
    for(ll i=18;i>=0;--i)
    {
        if(deep[bz[u][i]]>=deep[v])
        {
            if(maxx!=maxi[u][i])Ans=max(Ans,maxi[u][i]);
            else Ans=max(Ans,mini[u][i]);
            u=bz[u][i];
        }
    }
    return Ans;
}

inline void read(ll &x)
{
    x=0;
    char ch=getchar();
    while(ch<'0'||ch>'9')ch=getchar();
    while(ch>='0'&&ch<='9')x=x*10+(ch^48),ch=getchar();
}

ll m;

edge A[M<<1];

inline bool cmp(edge x,edge y)
{
    return x.d<y.d;
}

ll Father[N];
inline ll Get_Father(ll x)
{
    return (x==Father[x]) ? x : Father[x]=Get_Father(Father[x]);
}

bool B[M<<1];

int main()
{
    read(n),read(m);
    for(ll i=1;i<=m;++i)
    {
        read(A[i].u),read(A[i].v),read(A[i].d);
    }

    sort(A+1,A+m+1,cmp);

    for(ll i=1;i<=n;++i)
        Father[i]=i;

    ll Cnt=0ll;
    for(ll i=1;i<=m;++i)
    {
        ll Father_u=Get_Father(A[i].u);
        ll Father_v=Get_Father(A[i].v);
        if(Father_u!=Father_v)
        {
            Cnt+=A[i].d;
            Father[Father_u]=Father_v;
            addedge(A[i].u,A[i].v,A[i].d);
            B[i]=true;
        }
    }

    mini[1][0]=-INF;
    deep[1]=1;
    dfs(1,-1);
    cal();

    ll Ans=INF;

    for(ll i=1;i<=m;++i)
    {
        if(!B[i])
        {
            ll u=A[i].u;
            ll v=A[i].v;
            ll d=A[i].d;
            ll lca=LCA(u,v);
            ll maxu=qmax(u,lca,d);
            ll maxv=qmax(v,lca,d);
            Ans=min(Ans,Cnt-max(maxu,maxv)+d);
        }
    }

    printf("%lld",Ans);

    return 0;
}

树剖版本:

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#define MAXN 100010
#define MAXM 300010
#define pos(l, r) ((l+r) | (l != r))
using namespace std;

struct Edge {
    int u, v, w, f, next;
    bool operator < (const Edge &A) const { return w < A.w; }
} e[MAXM*2];

struct node {
    int m1, m2;
} t[MAXN*2];

int n, m, h[MAXN], dep[MAXN], son[MAXN], w[MAXN], tot, fa[MAXN], par[MAXN], cnt, id[MAXN], top[MAXN], a[MAXN], TOT;
long long MST, secMST = 1e15;
inline int max(int a, int b) {
    return a > b ? a : b;
}
inline int secmax(int a, int b, int c, int d) {
    int tmp[4] = {a, b, c, d};
    sort(tmp, tmp+4);
    for (int i = 2; i >= 0; --i) {
        if (tmp[i] != tmp[i+1]) return tmp[i];
    }
}

void addEdge(int ui, int vi, int wi, int fi) {
    e[++tot] = (Edge) {ui, vi, wi, fi, h[ui]};
    h[ui] = tot;
}

int find(int x) {
    return fa[x] == x ? x : fa[x] = find(fa[x]);
}

void dfs(int u) {
    w[u] = 1;
    for (int i = h[u]; i; i = e[i].next) {
        if (!w[e[i].v]) {
            dep[e[i].v] = dep[u]+1;
            par[e[i].v] = u;
            a[e[i].v] = e[i].w;
            dfs(e[i].v);
            w[u] += w[e[i].v];
            if (w[son[u]] < w[e[i].v]) son[u] = e[i].v;
        }
    }
}

void init(int u, int p) {
    id[u] = ++cnt;
    top[u] = p;
    if (son[u]) init(son[u], p);
    for (int i = h[u]; i; i = e[i].next) {
        if (!top[e[i].v]) init(e[i].v, e[i].v);
    }
}

void modify(int l, int r, int x, int d, int p) {
    if (l == r) {
        t[p].m1 = d;
        t[p].m2 = 0;
    } else {
        int mid = (l+r)>>1, lc = pos(l, mid), rc = pos(mid+1, r);
        if (x <= mid) modify(l, mid, x, d, lc);
        else modify(mid+1, r, x, d, rc);
        t[p].m2 = secmax(t[lc].m1, t[lc].m2, t[rc].m1, t[rc].m2);
        t[p].m1 = max(t[lc].m1, t[rc].m1);
    }
}

node query(int l, int r, int x, int y, int p) {
    if (x <= l && r <= y) return t[p];
    int mid = (l+r)>>1, lc = pos(l, mid), rc = pos(mid+1, r);
    if (x <= mid && y > mid) {
        node t1 = query(l, mid, x, y, lc), t2 = query(mid+1, r, x, y, rc);
        return (node) {max(t1.m1, t2.m1), secmax(t1.m1, t1.m2, t2.m1, t2.m2)};
    } else if (x <= mid) return query(l, mid, x, y, lc);
    else return query(mid+1, r, x, y, rc);
}

node solve(int u, int v) {
    int pu = top[u], pv = top[v];
    node res = (node) {0, 0};
    while (pu != pv) {
        if (dep[pu] < dep[pv]) {
            swap(pu, pv);
            swap(u, v);
        }
        node tmp = query(1, n, id[pu], id[u], pos(1, n));
        res.m2 = secmax(res.m1, res.m2, tmp.m1, tmp.m2);
        res.m1 = max(res.m1, tmp.m1);
        u = par[pu];
        pu = top[u];
    }
    if (u == v) return res;
    if (dep[u] < dep[v]) swap(u, v);
    node tmp = query(1, n, id[v]+1, id[u], pos(1, n));
    res.m2 = secmax(res.m1, res.m2, tmp.m1, tmp.m2);
    res.m1 = max(res.m1, tmp.m1);
    return res;
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1, ui, vi, wi; i <= m; ++i) {
        scanf("%d%d%d", &ui, &vi, &wi);
        addEdge(ui, vi, wi, 0);
    }
    sort(e+1, e+tot+1);
    TOT = tot;
    memset(h, 0, sizeof(h));
    for (int i = 1; i <= n; ++i) fa[i] = i;
    for (int i = 1, k; i <= TOT; ++i) {
        int ux = find(e[i].u), uy = find(e[i].v);
        if (ux != uy) {
            fa[ux] = uy;
            MST += e[i].w;
            e[i].f = 1;
            e[i].next = h[e[i].u];
            h[e[i].u] = i;
            addEdge(e[i].v, e[i].u, e[i].w, 1);
            k++;
        }
        if (k == n-1) break;
    }
    dfs(1);
    init(1, 1);
    for (int i = 1; i <= n; ++i) modify(1, n, id[i], a[i], pos(1, n));
    for (int i = 1; i <= TOT; ++i) {
        if (!e[i].f) {
            node cross = solve(e[i].u, e[i].v);
            long long tmp = MST+e[i].w-(cross.m1 == e[i].w ? cross.m2 : cross.m1);
            if (tmp > MST && tmp < secMST) secMST = tmp;
        }
    }
    printf("%lld\n", secMST);
    return 0;
}
posted @ 2018-09-06 14:41  Kevin_naticl  阅读(355)  评论(0编辑  收藏  举报