P4513 小白逛公园 (线段树)

题目链接


Solution

线段树是一门比较***钻的手艺...
此题我们需要维护 \(4\) 个变量:

  1. \(amx\) 代表当前节点的最大值.
  2. \(lmx\) 代表当前节点以左端点为起点的区间最大值.
  3. \(rmx\) 代表当前节点以右端点为结尾的区间最大值.
  4. \(sum\) 代表整段的和.

然后我们在 \(push\)_\(up\) 的时候,也是要做蛮多工作.
\(lc\) 为左端点,\(rc\) 为右端点.

  1. \(lmx=max(lmx_{lc},sum_{lc}+lmx_{rc})\)
    也就是说可以单独取左儿子里的最大值,也可以一直取到右儿子的 \(lmx\) 为止.

  2. \(rmx=max(rmx_{rc},sum_{rc}+rmx_{lc})\)
    和上文同理.

  3. \(sum=sum_{lc}+sum_{rc}\)

  4. \(amx=max(amx_{lc},amx_{rc},rmx_{lc}+lmx_{rc})\)
    最关键的一步,更新每一个节点的答案. 可以在图上自己理解,此处不赘述.

特别注意,查询的时候也要把所有查出来的区间进行类似的操作...

Code

#include<bits/stdc++.h>
using namespace std;
const int maxn=1000008;
struct node
{
    int l,r,lc,rc;
    int lmx,rmx,amx,sum;
}sgm[maxn*4];
int n,m,k,x,y;
int cnt,a[maxn];

void push_up(int x)
{
    int ll=sgm[x].lc,rr=sgm[x].rc;
    sgm[x].sum=sgm[ll].sum+sgm[rr].sum;
    sgm[x].lmx=max(sgm[ll].lmx,sgm[ll].sum+sgm[rr].lmx);
    sgm[x].rmx=max(sgm[rr].rmx,sgm[rr].sum+sgm[ll].rmx);
    sgm[x].amx=max(max(sgm[ll].amx,sgm[rr].amx),sgm[ll].rmx+sgm[rr].lmx);
}
void build(int l,int r,int now)
{
    sgm[now].l=l;
    sgm[now].r=r;
    if(l==r)
    {
        sgm[now].lmx=sgm[now].rmx=sgm[now].sum=sgm[now].amx=a[l];
        return;
    }
    int mid=(l+r)>>1;
    sgm[now].lc=2*now;
    build(l,mid,sgm[now].lc);
    sgm[now].rc=2*now+1;
    build(mid+1,r,sgm[now].rc);
    push_up(now);
}
void change(int now,int to,int num)
{
    int x=sgm[now].l,y=sgm[now].r;
    if(x==y)
    {
        sgm[now].lmx=sgm[now].rmx=sgm[now].sum=sgm[now].amx=num;
        return;
    }
    int mid=(x+y)>>1;
    if(to<=mid) change(sgm[now].lc,to,num);
    else change(sgm[now].rc,to,num);
    push_up(now);
}
node query(int now,int l,int r)
{
    int x=sgm[now].l,y=sgm[now].r;
    if(l<=x&&r>=y) return sgm[now];
    int mid=(x+y)>>1,ll=sgm[now].lc,rr=sgm[now].rc;
    if(r<=mid) return query(ll,l,r);
    else if(l>mid) return query(rr,l,r);
    else
    {
        node t,t1=query(ll,l,r),t2=query(rr,l,r);
        t.lmx=max(t1.lmx,t1.sum+t2.lmx);
        t.rmx=max(t2.rmx,t2.sum+t1.rmx);
        t.amx=max(max(t1.amx,t2.amx),t1.rmx+t2.lmx);
        return t;
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    build(1,n,1);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&k,&x,&y);
        if(k==1) 
        {
            if(x>y) swap(x,y);
            printf("%d\n",query(1,x,y).amx);
        }
        else change(1,x,y);
    }
    return 0;
}
posted @ 2018-08-25 19:34  Kevin_naticl  阅读(200)  评论(0编辑  收藏  举报