[USACO12DEC]第一!First! (Trie树,拓扑排序)

题目链接


Solution

感觉比较巧的题啊...
考虑几点:

  • 可以交换无数次字母表,即字母表可以为任意形态.

  • 对于以其他字符串为前缀的字符串,我们可以直接舍去.
    因为此时它所包含的前缀的字典序绝对比它本身小.

  • 需要使得某个字符串 \(S\) 字典序最小,需要讨论两种情况:
    \(1.\) 与它没有公共前缀的字符串
    此时我们即使得 \(S_{1}\) 大于其第一个即可.

    \(2.\) 与它有公共前缀的字符串
    我们令其最长公共前缀的位置为 \(k\) .
    那么此时我们即要求,对于任意字符串 \(T\), 在字母表中 \(S_{k+1}<T_{k+1}\) .
    我们可以将这种关系在 \(26\) 个字母中形成一张关系图,判断是否满足条件.
    直接判环即可.

其实以上两种情况可以都理解为第二种情况,只是第一种情况的\(k=0\)罢了.

怎样去快速定位公共前后缀的位置?
我们使用 \(Trie\) 树,直接将所有字符串插入 \(Trie\) 树中.
每一次处理都对当前节点所有的非本字符串节点连边,然后拓扑排序判环即可.
总时间复杂度 \(O(sum_{len}*26)\)

Code

#include<bits/stdc++.h>
using namespace std;
const int maxn=300008;
int ch[maxn][26];
int num[maxn],n,cnt;
struct sj{
    int to;
    int next;
}a[1008];
int du[30],tot,fuck;
int head[30],size;
string ans[maxn];

void add(int x,int y)
{
    a[++size].to=y;
    a[size].next=head[x];
    head[x]=size;
}

void dfs()
{
    queue<int>q;
    for(int i=0;i<26;i++)
    if(!du[i])
    q.push(i);
    while(!q.empty())
    {
        int now=q.front();q.pop();
        for(int i=head[now];i;i=a[i].next)
        {
            int tt=a[i].to;
            du[tt]--;
            if(!du[tt])
                q.push(tt);
        }
    }
}

int insert(char *s)
{
    int len=strlen(s),u=0;
    for(int i=0;i<len;i++)
    {
        if(!ch[u][s[i]-'a'])
        ch[u][s[i]-'a']=++tot;
        if(num[ch[u][s[i]-'a']])return 1;
        u=ch[u][s[i]-'a'];
    }
    num[u]++;
    return 0;
}

int pre(string s)
{
    int len=s.length(),u=0;
    for(int i=0;i<len;i++)
    {
        int p=s[i]-'a';
        
        for(int j=0;j<26;j++)
        {
            if(ch[u][j]!=0&&j!=p)
            add(p,j),
            du[j]++;
        }
        u=ch[u][p];
        if(i!=len-1&&num[u]!=0)return 0;
    }
    return 1;
}
string s[maxn];
char cha[maxn];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {	
        scanf("%s",cha);
        if(!insert(cha))
        {
            cnt++;
            int len=strlen(cha);
            for(int j=0;j<len;j++)
            s[cnt]+=cha[j];
        }
    }
    for(int i=1;i<=cnt;i++)
    {
        memset(a,0,sizeof(a)),size=0;
        memset(head,0,sizeof(head));
        memset(du,0,sizeof(du));
        if(!pre(s[i])){continue;}
        dfs();
        int flag=1;
        for(int j=0;j<26;j++)
         if(du[j])flag=0;
         
         if(flag)
         ans[++fuck]=s[i];
    }
    cout<<fuck<<endl;
    for(int i=1;i<=fuck;i++)
    cout<<ans[i]<<endl;
}

P3065 [USACO12DEC]第一!First!

posted @ 2018-08-10 21:17  Kevin_naticl  阅读(317)  评论(0编辑  收藏  举报