[AHOI2009]维护序列 (线段树)
题目描述
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。
输入输出格式
输入格式:
第一行两个整数N和P(1≤P≤1000000000)。 第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。 第三行有一个整数M,表示操作总数。 从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
输出格式:
对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
输入输出样例
输入样例#1: 复制
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
输出样例#1: 复制
2
35
8
说明
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。
测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
Source: Ahoi 2009
Solution
线段树的题目还真不能小看了...
这一道题花了我快一整节晚自习...
较之平常的线段树,会有一点不同.就是多了一个乘的操作.
所以我们需要令一个优先级,即先乘后加.
因为加无论什么时候加都没有关系,但是乘会对整个答案产生影响.
于是乎,只要打两个标记.在乘的时候,加的标记也要乘上那个值.
#include<bits/stdc++.h>
using namespace std;
const long long maxn=4000008;
long long n,m,p,num,pd;
long long x,y,k,ans;
long long w[maxn],add[maxn],mul[maxn];
long long build(long long x,long long L,long long R)
{
mul[x]=1;
if(L==R)
{
cin>>num;
return w[x]=num%p;
}
long long mid=(L+R)/2;
return w[x]=(build(x*2,L,mid)+build(x*2+1,mid+1,R))%p;
}
void down(long long x,long long l,long long r)
{
add[x*2]=(add[x]+add[x*2]*mul[x])%p;
add[x*2+1]=(add[x]+add[x*2+1]*mul[x])%p;
mul[x*2]=(mul[x*2]*mul[x])%p;
mul[x*2+1]=(mul[x*2+1]*mul[x])%p;
long long mid=(l+r)/2;
w[x*2]=(w[x*2]*mul[x]+add[x]*(mid-l+1))%p;
w[x*2+1]=(w[x*2+1]*mul[x]+add[x]*(r-mid))%p;
add[x]=0;
mul[x]=1;
}
long long query(long long x,long long L,long long R,long long l,long long r)
{
down(x,l,r);
if(l>=L&&r<=R)
return w[x]%p;
long long mid=(l+r)/2;
return ((L<=mid?query(x*2,L,R,l,mid):0)+(R>mid?query(x*2+1,L,R,mid+1,r):0))%p;
}
void update(long long x,long long v,long long pd,long long L,long long R,long long l,long long r)
{
down(x,l,r);
if(pd==1&&l>=L&&r<=R)
{
mul[x]=(mul[x]*v)%p;
add[x]=(add[x]*v)%p;
w[x]=(w[x]*mul[x])%p;
return;
}
if(pd==2&&l>=L&&r<=R)
{
add[x]=(add[x]+v)%p;
w[x]=(w[x]+add[x]*(r-l+1))%p;
return;
}
long long mid=(l+r)/2;
if(L<=mid)
update(x*2,v,pd,L,R,l,mid);
if(R>mid)
update(x*2+1,v,pd,L,R,mid+1,r);
w[x]=w[x*2]+w[x*2+1];
}
int main()
{
//ios::sync_with_stdio(false);
cin>>n>>p;
build(1,1,n);
cin>>m;
for(int i=1;i<=m;i++)
{
long long x,y,v;
cin>>pd;
if(pd!=3)
cin>>x>>y>>v,v%=p,
update(1,v,pd,x,y,1,n);
else
cin>>x>>y,
cout<<query(1,x,y,1,n)<<endl;
}
}