【IMX6ULL学习笔记】十、Linux字符设备驱动
一、字符设备驱动简介
Linux 应用程序对驱动程序的调用如图所示:
在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx”(xxx 是具体的驱动文件名字)的文件进行相应的操作即可实现对硬件的操作。
比如有个叫做 /dev/led 的驱动文件,此文件是 led 灯的驱动文件。应用程序使用 open 函数来打开文件/dev/led,使用完后使用 close 函数关闭 /dev/led 这个文件。open和close就是打开和关闭 led 驱动的函数,如果要点亮或关闭led,那么就使用 write 函数来操作,也就是向此驱动写入数据,这个数据就是要关闭还是要打开 led 的控制参数。如果要获取 led 灯的状态,就用 read 函数从驱动中读取相应的状态。
应用程序运行在用户空间,而 Linux 驱动属于内核的一部分,因此驱动运行于内核空间。在用户空间想要实现对内核的操作,如使用 open 函数打开 /dev/led 这个驱动,因为用户空间不能直接对内核进行操作,因此必须使用一个叫做“系统调用”的方法来实现从用户空间“陷入”到内核空间,这样才能实现对底层驱动的操作。
open、close、write 和 read 等这些函数是由 C 库提供的,在 Linux 系统中,系统调用作为 C 库的一部分。当我们调用 open 函数的时候流程如图 40.1.2 所示:
应用程序使用到的函数在具体驱动程序中都有与之对应的函数,比如应用程序中调用了 open 这个函数,那么在驱动程序中也得有一个名为 open 的函数。
每一个系统调用,在驱动中都有与之对应的一个驱动函数,在 Linux 内核文件 include/linux/fs.h 中有个叫做 file_operations 的结构体,此结构体就是 Linux 内核驱动操作函数集合,内容如下:
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *file, int mode, loff_t offset,
loff_t len);
void (*show_fdinfo)(struct seq_file *m, struct file *f);
#ifndef CONFIG_MMU
unsigned (*mmap_capabilities)(struct file *);
#endif
};
比较重要、常用的函数:
第 2 行:owner 拥有该结构体的模块的指针,一般设置为 THIS_MODULE。
第 3 行:llseek 函数用于修改文件当前的读写位置。
第 4 行:read 函数用于读取设备文件。
第 5 行:write 函数用于向设备文件写入(发送)数据。
第 9 行:poll 是个轮询函数,用于查询设备是否可以进行非阻塞的读写。
第 10 行:unlocked_ioctl 函数提供对于设备的控制功能,与应用程序中的ioctl函数对应。
第 11 行:compat_ioctl 函数与 unlocked_ioctl 函数功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是 unlocked_ioctl。
第 12 行:mmap 函数用于将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数,比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,就不用在用户空间和内核空间之间来回复制。
第 14 行:open 函数用于打开设备文件。
第 16 行:release 用于释放(关闭)设备文件,与应用程序中 close 函数对应。
第 17 行:fasync 函数用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘。
第 18 行:aio_fsync 函数与 fasync 函数的功能类似,只是 aio_fsync 是异步刷新待处理的数据。
二、字符设备驱动开发步骤
2.1 驱动模块的加载和卸载
Linux 驱动有两种运行方式,第一种就是将驱动编译进 Linux 内核中,这样当 Linux 内核启动的时候就会自动运行驱动程序。第二种就是将驱动编译成模块(Linux 下模块扩展名为.ko),在 Linux 内核启动以后使用“insmod”命令加载驱动模块。
模块有加载和卸载两种操作,我们在编写驱动的时候需要注册这两种操作函数,模块的加载和卸载注册函数如下:
module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数
module_init 函数用来向 Linux 内核注册一个模块加载函数,参数 xxx_init 就是需要注册的具体函数,当使用“insmod”命令加载驱动的时候,xxx_init 这个函数就会被调用。
module_exit 函数用来向 Linux 内核注册一个模块卸载函数,参数 xxx_exit 就是需要注册的具体函数,当使用“rmmod”命令卸载具体驱动的时候 xxx_exit 函数就会被调用。
字符设备驱动模块加载和卸载模板如下所示:
/* 驱动入口函数 */
static int __init xxx_init(void)
{
/* 入口函数具体内容 */
return 0;
}
/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/* 出口函数具体内容 */
}
/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);
第 2 行:定义了个名为 xxx_init 的驱动入口函数,并且使用了“__init”来修饰。
第 9 行:定义了个名为 xxx_exit 的驱动出口函数,并且使用了“__exit”来修饰。
第 15 行:调用函数 module_init 来声明 xxx_init 为驱动入口函数,当加载驱动的时候 xxx_init 函数就会被调用。
第 16 行:调用函数module_exit来声明xxx_exit为驱动出口函数,当卸载驱动的时候xxx_exit 函数就会被调用。
驱动编译完成以后扩展名为.ko,有两种命令可以加载驱动模块:insmod 和 modprobe。
insmod 是最简单的模块加载命令,此命令用于加载指定的.ko 模块,比如加载 drv.ko 这个驱动模块,命令如下:
insmod drv.ko
insmod 命令不能解决模块的依赖关系,比如 drv.ko 依赖 first.ko 这个模块,必须先使用 insmod 命令加载 first.ko 模块,然后再加载 drv.ko 这个模块。
modprobe 命令会分析模块的依赖关系,然后会将所有的依赖模块都加载到内核中。modprobe 命令主要智能在提供了模块的依赖性分析、错误检查、错误报告等功能。modprobe 命令默认会去 /lib/modules/<kernel-version> 目录中查找模块,比如使用的 Linux kernel 的版本号为 4.1.15,modprobe 命令默认会到 /lib/modules/4.1.15 这个目录中查找相应的驱动模块,一般自己制作的根文件系统中是不会有这个目录的,需要手动创建。
驱动模块的卸载使用命令“rmmod”即可,比如要卸载 drv.ko,使用如下命令:
rmmod drv.ko
也可以使用“modprobe -r”命令卸载驱动,比如要卸载 drv.ko,命令如下:
modprobe -r drv.ko
modprobe 命令可以卸载掉驱动模块所依赖的其他模块,前提是这些依赖模块已经没有被其他模块所使用,否则就不能使用 modprobe 来卸载驱动模块。所以对于模块的卸载,推荐使用 rmmod 命令。
2.2 字符设备注册与注销
对于字符设备驱动而言,当驱动模块加载成功以后需要注册字符设备,同样,卸载驱动模块的时候也需要注销掉字符设备。字符设备的注册和注销函数原型如下所示:
static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops)
static inline void unregister_chrdev(unsigned int major, const char *name)
register_chrdev 函数用于注册字符设备,此函数一共有三个参数,这三个参数的含义如下:
major:主设备号,Linux 下每个设备都有一个设备号,分为主设备号和次设备号。
name:设备名字,指向一串字符串。
fops:结构体 file_operations 类型指针,指向设备的操作函数集合变量。
unregister_chrdev 函数用于注销字符设备,此函数有两个参数,这两个参数含义如下:
major:要注销的设备对应的主设备号。
name:要注销的设备对应的设备名。
一般字符设备的注册在驱动模块的入口函数 xxx_init 中进行,字符设备的注销在驱动模块的出口函数 xxx_exit 中进行。字符设备的注册和注销示例代码如下所示:
static struct file_operations test_fops;
/* 驱动入口函数 */
static int __init xxx_init(void)
{
/* 入口函数具体内容 */
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue < 0){
/* 字符设备注册失败,自行处理 */
}
return 0;
}
/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(200, "chrtest");
}
/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);
2.3 实现设备的具体操作函数
1、对 chrtest 进行打开和关闭操作
设备打开和关闭是最基本的要求,几乎所有的设备都得提供打开和关闭的功能。因此我们需要实现 file_operations 中的 open 和 release 这两个函数。
2、对 chrtest 进行读写操作
假设 chrtest 设备控制着一段缓冲区(内存),应用程序通过 read 和 write 这两个函数对 chrtest 的缓冲区进行读写操作,需要实现 file_operations 中的 read 和 write 这两个函数。
加入 file_operations 结构体变量 test_fops 的初始化操,内容如下:
/* 打开设备 */
static int chrtest_open(struct inode *inode, struct file *filp)
{
/* 用户实现具体功能 */
return 0;
}
/* 从设备读取 */
static ssize_t chrtest_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
/* 用户实现具体功能 */
return 0;
}
/* 向设备写数据 */
static ssize_t chrtest_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
/* 用户实现具体功能 */
return 0;
}
/* 关闭/释放设备 */
static int chrtest_release(struct inode *inode, struct file *filp)
{
/* 用户实现具体功能 */
return 0;
}
static struct file_operations test_fops = {
.owner = THIS_MODULE,
.open = chrtest_open,
.read = chrtest_read,
.write = chrtest_write,
.release = chrtest_release,
};
/* 驱动入口函数 */
static int __init xxx_init(void)
{
/* 入口函数具体内容 */
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue < 0){
/* 字符设备注册失败,自行处理 */
}
return 0;
}
/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(200, "chrtest");
}
/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);
2.4 添加 LICENSE 和作者信息
LICENSE 和作者信息的添加使用如下两个函数:
MODULE_LICENSE() //添加模块 LICENSE 信息
MODULE_AUTHOR() //添加模块作者信息
三、Linux 设备号
3.1 设备号的组成
Linux 中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成,主设备号表示某一个具体的驱动,次设备号表示使用这个驱动的各个设备。Linux 提供了
一个 dev_t 的数据类型表示设备号,dev_t 定义在include/linux/types.h 里面,定义如下:
typedef __u32 __kernel_dev_t;
......
typedef __kernel_dev_t dev_t;
其中__u32 定义在文件 include/uapi/asm-generic/int-ll64.h 里面:
typedef unsigned int __u32;
因此 dev_t 是 unsigned int 类型,是一个 32 位的数据类型。这 32 位的数据构成了主设备号和次设备号,其中高 12 位为主设备号,低 20 位为次设备号。
在文件 include/linux/kdev_t.h 中提供了几个关于设备号的操作函数(本质是宏),如下所示:
#define MINORBITS 20
#define MINORMASK ((1U << MINORBITS) - 1)
#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))
第 1 行:宏 MINORBITS 表示次设备号位数,一共是 20 位。
第 2 行:宏 MINORMASK 表示次设备号掩码。
第 3 行:宏 MAJOR 用于从 dev_t 中获取主设备号,将 dev_t 右移 20 位即可。
第 4 行:宏 MINOR 用于从 dev_t 中获取次设备号,取 dev_t 的低 20 位的值。
第 6 行:宏 MKDEV 用于将给定的主设备号和次设备号合成 dev_t 类型的设备号。
3.2 设备号的分配
1、静态分配设备号
注册字符设备的时候需要给设备指定一个设备号,这个设备号可以是驱动开发者静态的指定一个设备号,比如选择 200 这个主设备号。
静态分配设备号需要我们检查当前系统中所有被使用了的设备号,然后挑选一个没有使用的。
2、动态分配设备号
在注册字符设备之前先申请一个设备号,系统会自动给你一个没有被使用的设备号,卸载驱动的时候释放掉这个设备号即可。
设备号的申请函数如下:
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)
函数 alloc_chrdev_region 用于申请设备号,此函数有 4 个参数:
dev:保存申请到的设备号。
baseminor:次设备号起始地址,alloc_chrdev_region 可以申请一段连续的多个设备号,这些设备号的主设备号一样,但是次设备号不同,次设备号以 baseminor 为起始地址地址开始递增。一般 baseminor 为 0,也就是说次设备号从 0 开始。
count:要申请的设备号数量。
name:设备名字。
注销字符设备之后要释放掉设备号,设备号释放函数如下:
void unregister_chrdev_region(dev_t from, unsigned count)
此函数有两个参数:
from:要释放的设备号。
count:表示从 from 开始,要释放的设备号数量。
四、工程创建和模板
4.1、添加头文件路径
编写 Linux 驱动,因此会用到 Linux 源码中的函数。我们需要在 VSCode 中添加 Linux 源码中的头文件路径。打开 VSCode,按下“Crtl+Shift+P”打开 VSCode 的控制台,然后输入 “C/C++: Edit configurations(JSON) ”,打开 C/C++编辑配置文件,如图 40.4.1.3 所示:
打开以后会自动在.vscode 目录下生成一个名为 c_cpp_properties.json 的文件,此文件默认内容如下所示:
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
],
"defines": [],
"compilerPath": "/usr/bin/clang",
"cStandard": "c11",
"cppStandard": "c++17",
"intelliSenseMode": "clang-x64"
}
],
"version": 4
}
第 5 行的 includePath 表示头文件路径,需要将 Linux 源码里面的头文件路径添加进来,也就是我们前面移植的 Linux 源码中的头文件路径。
添加头文件路径以后的 c_cpp_properties.json 的文件内容如下所示:
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
"/home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek/include",
"/home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek/arch/arm/include",
"/home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek/arch/arm/include/generated/"
],
"defines": [],
......
}
],
"version": 4
}
4.2、驱动模板
新建 chrdevbase.c 文件,输入如下内容:
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#define CHRDEVBASE_MAJOR 200 /* 主设备号 */
#define CHRDEVBASE_NAME "chrdevbase" /* 设备名 */
/*
* @description : 打开设备
* @param – inode : 传递给驱动的 inode
* @param - filp : 设备文件,file 结构体有个叫做 private_data 的成员变量
* 一般在 open 的时候将 private_data 指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int chrdevbase_open(struct inode *inode, struct file *filp)
{
printk("chrdevbase open!\r\n");
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
printk("chrdevbase read!\r\n");
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t chrdevbase_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
printk("chrdevbase write!\r\n");
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int chrdevbase_release(struct inode *inode, struct file *filp)
{
printk("chrdevbase release!\r\n");
return 0;
}
/*
* 设备操作函数结构体
*/
static struct file_operations chrdevbase_fops = {
.owner = THIS_MODULE,
.open = chrdevbase_open,
.read = chrdevbase_read,
.write = chrdevbase_write,
.release = chrdevbase_release,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 0 成功;其他 失败
*/
static int __init chrdevbase_init(void)
{
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME, &chrdevbase_fops);
if(retvalue < 0){
printk("chrdevbase driver register failed\r\n");
}
printk("chrdevbase_init()\r\n");
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit chrdevbase_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME);
printk("chrdevbase_exit()\r\n");
}
/*
* 将上面两个函数指定为驱动的入口和出口函数
*/
module_init(chrdevbase_init);
module_exit(chrdevbase_exit);
/*
* LICENSE 和作者信息
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
示例中使用到了 printk 函数,相当于 printf 的孪生兄妹,printf 运行在用户态,printk 运行在内核态。在内核中想要向控制台输出或显示一些内容,必须使用
printk 这个函数。
printk 可以根据日志级别对消息进行分类,一共有 8 个消息级别,这 8 个消息级别定义在文件 include/linux/kern_levels.h 里面,定义如下:
#define KERN_SOH "\001"
#define KERN_EMERG KERN_SOH "0" /* 紧急事件,一般是内核崩溃 */
#define KERN_ALERT KERN_SOH "1" /* 必须立即采取行动 */
#define KERN_CRIT KERN_SOH "2" /* 临界条件,比如严重的软件或硬件错误 */
#define KERN_ERR KERN_SOH "3" /* 错误状态,一般设备驱动程序中使用KERN_ERR 报告硬件错误 */
#define KERN_WARNING KERN_SOH "4" /* 警告信息,不会对系统造成严重影响*/
#define KERN_NOTICE KERN_SOH "5" /* 有必要进行提示的一些信息 */
#define KERN_INFO KERN_SOH "6" /* 提示性的信息 */
#define KERN_DEBUG KERN_SOH "7" /* 调试信息 */
一共 8 个级别,其中 0 的优先级最高,7 的优先级最低。如果要设置消息级别,参
考如下示例:
printk(KERN_EMERG "gsmi: Log Shutdown Reason\n");
用 printk 的时候不显式的设置消息级别,那么 printk 将会采用默认级别
MESSAGE_LOGLEVEL_DEFAULT ,MESSAGE_LOGLEVEL_DEFAULT 默认为 4。
在 include/linux/printk.h 中有个宏 CONSOLE_LOGLEVEL_DEFAULT,定义如下:
#define CONSOLE_LOGLEVEL_DEFAULT 7
CONSOLE_LOGLEVEL_DEFAULT 控制着哪些级别的消息可以显示在控制台上,此宏默认为 7,意味着只有优先级高于 7 的消息才能显示在控制台上。
4.3、应用程序模板
新建 chrdevbaseAPP.c 文件,输入如下内容:
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
static char usrdata[] = {"usr data!"};
/*
* @description : main 主程序
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
int fd, retvalue;
char *filename;
char readbuf[100], writebuf[100];
if(argc != 3){
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
/* 打开驱动文件 */
fd = open(filename, O_RDWR);
if(fd < 0){
printf("Can't open file %s\r\n", filename);
return -1;
}
if(atoi(argv[2]) == 1){ /* 从驱动文件读取数据 */
retvalue = read(fd, readbuf, 50);
if(retvalue < 0){
printf("read file %s failed!\r\n", filename);
}else{
/* 读取成功,打印出读取成功的数据 */
printf("read data:%s\r\n",readbuf);
}
}
if(atoi(argv[2]) == 2){
/* 向设备驱动写数据 */
memcpy(writebuf, usrdata, sizeof(usrdata));
retvalue = write(fd, writebuf, 50);
if(retvalue < 0){
printf("write file %s failed!\r\n", filename);
}
}
/* 关闭设备 */
retvalue = close(fd);
if(retvalue < 0){
printf("Can't close file %s\r\n", filename);
return -1;
}
return 0;
}
第 22 行:判断运行测试 APP 的时候输入的参数是不是为 3 个,main 函数的 argc 参数表示参数数量,argv[]保存着具体的参数,如果参数不为 3 个的话就表示测试 APP 用法错误。
比如,要从 chrdevbase 设备中读取数据,需要输入如下命令:
./chrdevbaseApp /dev/chrdevbase 1
上述命令一共有三个参数“./chrdevbaseApp”、“/dev/chrdevbase”和“1”,这三个参数分别对应 argv[0]、argv[1]和 argv[2]。
第一个参数表示运行 chrdevbaseAPP 这个软件,第二个参数表示测试APP要打开 /dev/chrdevbase 这个设备。第三个参数是要执行的操作,1表示从chrdevbase中读取数据,2 表示向 chrdevbase 写数据。
编译:
测试 APP 是在 ARM 开发板上运行的,需要使用 arm-linux-gnueabihf-gcc 来编译,输入如下命令:
arm-linux-gnueabihf-gcc chrdevbaseApp.c -o chrdevbaseApp
编译完成以后会生成一个叫做 chrdevbaseApp 的可执行程序,输入如下命令查看
chrdevbaseAPP 这个程序的文件信息:
file chrdevbaseApp
4.4、驱动 Makefile 模板
KERNELDIR := /home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek
CURRENT_PATH := $(shell pwd)
obj-m := chrdevbase.o
build: kernel_modules
kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean
4.5、加载驱动运行
1、加载驱动模块
启动 Linux 系统,检查开发板根文件系统中有没有“/lib/modules/4.1.15”这个目录,如果没有的话自行创建。“/lib/modules/4.1.15”这个目录用来存放驱动模块,使用 modprobe 命令加载驱动模块的时候,驱动模块要存放在此目录下。
输入如下命令加载 chrdevbase.ko 驱动文件:
insmod chrdevbase.ko
或
modprobe chrdevbase.ko
如果使用 modprobe 加载驱动的话,可能会出现如图所示的提示:
从图中可以看出,modprobe 提示无法打开 “modules.dep” 这个文件,因此驱动挂载失败了。我们不用手动创建 modules.dep 这个文件,直接输入 depmod 命令即可自动生成 modules.dep,有些根文件系统可能没有 depmod 这个命令,如果没有这个命令就只能重新配置 busybox,使能此命令,然后重新编译 busybox。
2、创建设备节点文件
驱动加载成功需要在 /dev 目录下创建一个与之对应的设备节点文件,应用程序就是通过操作这个设备节点文件来完成对具体设备的操作。
输入如下命令创建/dev/chrdevbase 这个设备节点文件:
mknod /dev/chrdevbase c 200 0
其中“mknod”是创建节点命令,“/dev/chrdevbase”是要创建的节点文件,“c”表示这是个字符设备,“200”是设备的主设备号,“0”是设备的次设备号。创建完成后会存在 /dev/chrdevbase 这个文件,可以使用“ls /dev/chrdevbase -l”命令查看。
3、chrdevbase 设备操作测试
如果 chrdevbaseAPP 想要读写 chrdevbase 设备,直对 /dev/chrdevbase 进行读写操作即可。
使用 chrdevbaseApp 软件操作 chrdevbase 这个设备,进行读操作命令:
./chrdevbaseApp /dev/chrdevbase 1
测试对 chrdevbase 设备的写操作,输入如下命令:
./chrdevbaseApp /dev/chrdevbase 2
4、卸载驱动模块
输入如下命令卸载掉 chrdevbase 这个设备:
rmmod chrdevbase.ko
总结
字符设备驱动开发重点是使用 register_chrdev 函数注册字符设备,当不再使用设备的时候就使用 unregister_chrdev 函数注销字符设备,驱动模块加载成功以后还需要手动使用 mknod 命令创建设备节点。