【POJ 2152】 Fire (树形DP)

Fire
 

Description

Country Z has N cities, which are numbered from 1 to N. Cities are connected by highways, and there is exact one path between two different cities. Recently country Z often caught fire, so the government decided to build some firehouses in some cities. Build a firehouse in city K cost W(K). W for different cities may be different. If there is not firehouse in city K, the distance between it and the nearest city which has a firehouse, can’t be more than D(K). D for different cities also may be different. To save money, the government wants you to calculate the minimum cost to build firehouses.

Input

The first line of input contains a single integer T representing the number of test cases. The following T blocks each represents a test case. 

The first line of each block contains an integer N (1 < N <= 1000). The second line contains N numbers separated by one or more blanks. The I-th number means W(I) (0 < W(I) <= 10000). The third line contains N numbers separated by one or more blanks. The I-th number means D(I) (0 <= D(I) <= 10000). The following N-1 lines each contains three integers u, v, L (1 <= u, v <= N,0 < L <= 1000), which means there is a highway between city u and v of length L. 

Output

For each test case output the minimum cost on a single line.

Sample Input

5
5
1 1 1 1 1
1 1 1 1 1
1 2 1
2 3 1
3 4 1
4 5 1
5
1 1 1 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1
5
1 1 3 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1
4
2 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2
4
4 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2

Sample Output

2
1
2
2
3

Source

POJ Monthly,Lou Tiancheng
 
 
【题意】
  在树上建消防站,要求每个节点离最近的消防站距离小于K,问最小花费。
 
【分析】
  之前做过一道有点像的题。但那题是费用还跟最小距离有关的,并且树是特殊的logn层,每条边的边权都是1。当时的第二维是记录距离。
  这题点数比较小,第二维是记录负责点。[其实我是看了陈启峰的论文的,但不是很懂,我说说自己的理解~
                                                                                                        论文连接在这里http://wenku.baidu.com/view/82124f74f242336c1eb95e44.html]
  f[i][j]是i这棵子树,i的负责点是j的最小费用。g[i]表示i这棵子树,不知道谁是负责点的最小费用。(负责点可以是树上的任意位置)
  转移方程:f[x][i]=min(f[y][i]-w[i],g[y])+w[i]。
  看方程我们可以看出我们只把负责点是i的w[i]的重复计算去掉了,这好像会带来一个问题:
  就是x有两个孩子y1,y2,可能y1和y2的负责点都不是x的负责点,但是y1,y2的负责点是同一个点,那么这个相同的负责点就会算了两次。
  看图:
  
  假设x的负责点是a,y1,y2的负责点是b。
  情况1:b不在y1或y2的子树上,那么y1和y2走到b时必定经过x,那么x的负责点可以成为y1,y2的负责点,且费用更少了(这样子的负责点只计算一次)
  情况2:b不在y1的子树上,在y2的子树上。那y1走到b也必定经过x。
      若dis[x][a]>dis[x][b],那么x的负责点可以变成b,且费用更少。这个方案在f[x][b]中会算到。
      若diis[x][a]<dis[x][b],那么y1的负责点可以变成a,且这样子a的负责费用只会计算一次。(反过来也一样就不说了)
 
  好像就是这样。。吧。。
  感觉这种跟树上的路径长度啊有关的东西,都有一些特殊的东西,就是你经过父亲走的时候,有些情况是可以不予考虑的,减掉这些情况,dp打起来就会简单得多了。
 
代码如下:
 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<iostream>
 5 #include<algorithm>
 6 using namespace std;
 7 #define Maxn 1010
 8 
 9 struct node
10 {
11     int x,y,c,next;
12 }t[2*Maxn];int len;
13 int first[Maxn];
14 int n,w[Maxn],d[Maxn];
15 
16 void ins(int x,int y,int c)
17 {
18     t[++len].x=x;t[len].y=y;t[len].c=c;
19     t[len].next=first[x];first[x]=len;
20 }
21 
22 int mymin(int x,int y) {return x<y?x:y;}
23 int mymax(int x,int y) {return x>y?x:y;}
24 
25 int dis[Maxn][Maxn];
26 
27 void get_dis(int st,int x,int f)
28 {
29     for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
30     {
31         int y=t[i].y;
32         dis[st][y]=dis[st][x]+t[i].c;
33         get_dis(st,y,x);
34     }        
35 }
36 
37 int f[Maxn][Maxn],g[Maxn];
38 void ffind(int x,int fa)
39 {
40     for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
41     {
42         int y=t[i].y;
43         ffind(y,x);
44     }
45     for(int i=1;i<=n;i++) if(dis[x][i]<=d[x])
46     {
47         f[x][i]=w[i];
48         for(int j=first[x];j;j=t[j].next) if(t[j].y!=fa)
49         {
50             int y=t[j].y;
51             f[x][i]+=mymin(f[y][i]-w[i],g[y]);
52         }
53         g[x]=mymin(g[x],f[x][i]);
54     }
55 }
56 
57 int main()
58 {
59     int T;
60     scanf("%d",&T);
61     while(T--)
62     {
63         scanf("%d",&n);
64         len=0;
65         memset(first,0,sizeof(first));
66         for(int i=1;i<=n;i++) scanf("%d",&w[i]);
67         for(int i=1;i<=n;i++) scanf("%d",&d[i]);
68         for(int i=1;i<n;i++)
69         {
70             int x,y,c;
71             scanf("%d%d%d",&x,&y,&c);
72             ins(x,y,c);ins(y,x,c);
73         }
74         for(int i=1;i<=n;i++)
75         {
76             dis[i][i]=0;
77             get_dis(i,i,0);
78         }
79         memset(f,63,sizeof(f));
80         memset(g,63,sizeof(g));
81         ffind(1,0);
82         printf("%d\n",g[1]);
83     }
84     return 0;
85 }
[POJ 2152]

 

2016-10-17 09:06:04

posted @ 2016-10-17 09:01  konjak魔芋  阅读(240)  评论(0编辑  收藏  举报